US009047243B2

a2z United States Patent (10) Patent No.: US 9,047,243 B2
Taylor et al. 45) Date of Patent: Jun. 2, 2015
(54) METHOD AND APPARATUS FOR LOW 5,163,131 A 11/1992 Rowetal.
LATENCY DATA DISTRIBUTION 5,249,292 A 9/1993 Chiappa
5,347,634 A 9/1994 Herrell et al.
. . 5,404,488 A 4/1995 Kerrigan et al.
(75) Inventors: David E. Taylor, St. Louis, MO (US); 5.421.028 A 5/1995 Swan%on
Scott Parsons, St. Charles, MO (US); 5,596,569 A 1/1997 Madonna et al.
David Vincent Schuehler, St. Louis, 5,802,290 A 9/1998 Casselman
MO (US); Todd Alan Strader, Hazlet, gggg‘gg i 1}; iggg gessler ettali
N R Rk usman et al.
NI (US); Ryan L. Eder, Manchester, 6,006264 A 12/1999 Colby et al.
MO (US) 6,067,569 A 52000 Khaki et al.
6,105,067 A 8/2000 Batra
(73) Assignee: IP RESERVOIR, LLC, St. Louis, MO .
(US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
patent is extended or adjusted under 35 WO 199400443 Al 4/1994
U.S.C. 154(b) by 99 days. WO 2000041136 Al 7/2000
(21) Appl. No.: 13/440,118 (Continued)
OTHER PUBLICATIONS
(22) Filed: Apr. 5,2012)) o
International Search Report and Written Opinion for PCT/US2012/
(65) Prior Publication Data 069142 dated Feb. 22, 2013. o
Arnold et al., “The Splash 2 Processor and Applications”, Proceed-
US 2013/0159449 Al Jun. 20, 2013 ings 1993 IEEE International Conference on Computer Design:
VLSI in Computers and Processors (ICCD ’93), Oct. 3, 1993, pp.
ot 482-485, IEEE Computer Society, Cambridge, MA USA.
Related U.S. Application Data Baboescu et al., “Scalable Packet Classification,” SIGCOMM’01,
(60) Provisional application No. 61/570,670, filed on Dec. Aug. 27-31, 2001, pp. 199-210, San Diego, California, USA; hitp:/
14, 2011. www.ecse.rpi.edu/homepages/shivkuma/teaching/sp2001/readings/
baboescu-pkt-classification.pdf.
(51) Int.ClL Continued
GOGF 15/167 (2006.01) (Continued)
GO6F 15/173 (2006.01) Primary Examiner — Hee Soo Kim
(52) US.Cl (74) Attorney, Agent, or Firm — Thompson Coburn LLP;
CPC GO6F 15/167 (2013.01); GO6F 15/17331 Benjamin L. Volk, Jr.
(2013.01)
(58) Field of Classification Search 1)) ABSTRACT
[CJIS)%C """""""""""" GOGF 12/0196/72;1 3G giz 1251/ ;7;?2 Various techniques are disclosed for distributing data, par-
See a hcatlon ﬁle forcomle fe searcl,l his t’o ’ ticularly real-time data such as financial market data, to data
PP P RE consumers at low latency. Exemplary embodiments include
(56) References Cited embodiments that employ adaptive data distribution tech-
niques and embodiments that employ a multi-class distribu-
U.S. PATENT DOCUMENTS tion engine.
4,300,193 A 11/1981 Bradley et al. 99 Claims, 16 Drawing Sheets

1302

102

—
mmmmm pplcation 60B
AP 1300
1304 402 ahared memory)
Reskima record updales o100
E _//
1308
\ G016 Write:
2y INTC @ Ox0180 ’—‘ OXO4FF
Record ID 1 (INTC)to
Consumer 080, 1, N
408 Cllert Distribution Records. loation JANE 102
P consarer spplisaton
] ——— 1308 o
1202 Gonaumer agdress table ot 0
| [100 808, ouaress = D014, bane = 0100, iz = GH0 chared memary
“e{-£ 1D 1: JANE; address = 0:0156 base = 0x0240, size = 00400 E ocao | |
1302 i X156 Wirte:
{75 N AN address = G100 base = G020, o6 = 06400 | INTC@ 02D
1312 il
wortoreds
1810 DG 16M, offeet = G010
. D 1: INTG, offsel = 0x0080
onsumer applcation FANK 102
D2 AAPL, ofeet = 00200
AR
arared memory
ID N: S8YS, offeet = 0x0380 1300
EI -
o081F
\\ 408

US 9,047,243 B2

Page 2
(56) References Cited 8,095,508 B2 1/2012 Chamberlain et al.
8,131,697 B2 3/2012 Indeck et al.
U.S. PATENT DOCUMENTS 8,156,101 B2 4/2012 Indeck et al.
8,181,239 B2 5/2012 Pandya
6,226,676 Bl 5/2001 Crump et al. 8,200,599 B2 6/2012 Pandya
6,272,616 Bl 8/2001 Fernando et al. 8,326,819 B2 12/2012 Indeck et al.
6.279.140 Bl 8/2001 Slane 8,374,986 B2 2/2013 Indeck et al.
6:336’150 Bl 1/2002 Ellis et al. 8,407,122 B2 3/2013 Parsons et al.
6,370:592 Bl 4/2002 Kumpf 8,458,081 B2 6/2013 Parsons et al.
6,397,259 Bl 5/2002 Lincke et al. 8,478,680 B2 7/2013 Parsons et al.
6,412,000 Bl 6/2002 Riddle et al. 8,595,104 B2 11/2013 Parsons et al.
6,430,272 Bl 8/2002 Maruyama et al. 8,600,856 B2 12/2013 Parsons et al.
6,484,209 Bl 11/2002 Momirov 8,601,086 B2 12/2013 Pandya
6.499.107 Bl 12/2002 Gleichauf et al. 8,620,881 B2 12/2013 Chamberlain et al.
6,581,098 Bl 6/2003 Kumpf 8,626,624 B2 1/2014 Parsons et al.
6,601,104 Bl 7/2003 Fallon 8,655,764 B2 2/2014 Parsons et al.
6,604,158 B1 82003 Fallon 8,737,606 B2 52014 Taylor et al.
6625.150 Bl 9/2003 Yu 8,751,452 B2 6/2014 Chamberlain et al.
6,704:816 Bl 3/2004 Burke 8,762,249 B2 6/2014 Taylor et al.
6,710,702 Bl 3/2004 Averbuch et al. 8,768,805 B2 72014 Taylor et al.
6,711,558 Bl 3/2004 Indeck et al. 8,768,888 B2 7/2014 Chamberlain et al.
6,765,918 Bl 7/2004 Dixon et al. 8,843,408 B2 9/2014 Singlaetal.
6,807,156 B1 10/2004 Veres et al. 8,879,727 B2 11/2014 Taylor et al.
6,820,129 Bl 11/2004 Courey, Jr. 8,880,501 B2 11/2014 Indeck et al.
6.847.645 Bl 1/2005 Potter et al. 2001/0052038 Al 12/2001 Fallon et al.
6.870.837 B2 3/2005 Ho et al. 2001/0056547 Al 12/2001 Dixon
6.877.044 B2 4/2005 Lo of al. 2002/0019812 Al 2/2002 Board et al.
6931545 Bl 82005 Taectal. 2002/0031125 A1 3/2002 Sato
6.944.168 B2 9/2005 Paatela et al. 2002/0049841 Al 4/2002 Johnsonetal. ... 709/225
6.978.223 B2 12/2005 Milliken 2002/0069370 AL 6/2002 Mack
6.981.054 Bl 12/2005 Krishna 2002/0069375 Al 6/2002 Bowen
7.058.735 B2 6/2006 Spencer 2002/0080871 Al 6/2002 Fallon et al.
7,065,482 B2 6/2006 Shorey et al. 2002/0091826 Al 7/2002 Comeau etal. 709/226
7.093.023 B2 8/2006 Lockwood et al. 2002/0095512 Al 7/2002 Rana et al.
7.117.280 B2 10/2006 Vasudevan 2002/0101425 Al 82002 Hamid
7.130.913 B2 10/2006 Fallon 2003/0014521 Al 1/2003 Elson et al.
7 139’743 B2 11/2006 Indeck et al. 2003/0018630 Al 1/2003 Indeck et al.
7181437 B2 2/2007 Indeck et al. 2003/0037037 Al 2/2003 Adams et al.
7.191.233 B2 3/2007 Miller 2003/0041129 Al 2/2003 Applcby-Allis
7321.937 B2 12008 Fallon 2003/0078865 Al 4/2003 Lee
7372875 B2 5/2008 Hadzic et al. 2003/0097481 A1 5/2003 Richter
7376755 B2 5/2008 Pandya 2003/0099254 A1 5/2003 Richter
7,386,046 B2 6/2008 Fallon et al. 2003/0105721 Al 6/2003 Ginter et al.
7,415,723 B2 8/2008 Pandya 2003/0120460 Al 6/2003 Aubury
7,417,568 B2 /2008 Fallon et al. 2003/0121010 AL 6/2003 Aubury
7.420.931 B2 9/2008 Nanda et al. 2003/0140337 Al 7/2003 Aubury
7480253 Bl 1/2009 Allan 2003/0154284 Al 82003 Bernardin et al.
7.487.264 B2 2/2009 Pandya 2003/0177253 Al 9/2003 Schuehler et al.
7.496.108 B2 2/2009 Biran et al. 2003/0191876 Al 10/2003 Fallon
7,536,462 B2 5/2009 Pandya 2003/0221013 Al 11/2003 Lockwood et al.
7.617.291 B2 11/2009 Fan et al. 2004/0010612 Al 1/2004 Pandya
7.627.693 B2 12/2009 Pandya 2004/0015633 Al 1/2004 Smith
7,631,107 B2 12/2009 Pandya 2004/0019703 Al 1/2004 Burton
7,636,703 B2 12/2009 Taylor 2004/0028047 Al 2/2004 Hou et al.
7,685,254 B2 3/2010 Pandya 2004/0049596 Al 3/2004 Schuehler et al.
7,827,190 B2 11/2010 Pandya 2004/0054924 Al 3/2004 Chuah et al.
7,831,606 B2 11/2010 Pandya 2004/0105458 Al 6/2004 Ishizuka
7,831,607 B2 11/2010 Pandya 2004/0205149 Al 10/2004 Dillon et al.
7,840,482 B2 11/2010 Singia et al. 2005/0044344 Al 2/2005 Stevens
7,856,545 B2 12/2010 Casselman 2005/0108518 Al 52005 Pandya
7.856.546 B2 12/2010 Casselman et al. 2005/0243824 Al 11/2005 Abbazia et al.
7.870217 B2 1/2011 Pandya 2006/0020715 A1 1/2006 Jungck
7,890,692 B2 2/2011 Pandya 2006/0039287 Al 2/2006 Hasegawa et al.
7,899,976 B2 3/2011 Pandya 2006/0109798 Al 5/2006 Yamada
7,899,977 B2 3/2011 Pandya 2006/0215691 Al 9/2006 Kobayashi et al.
7,899,978 B2 3/2011 Pandya 2006/0294059 Al 12/2006 Chamberlain et al.
7,912,808 B2 3/2011 Pandya 2007/0011317 Al 1/2007 Brandyburg et al.
7,917,299 B2 3/2011 Bubhler et al. 2007/0011687 Al 1/2007 Ilik et al.
7,921,046 B2 4/2011 Parsons et al. 2007/0061594 Al 3/2007 Ginter et al.
7,944,920 B2 5/2011 Pandya 2007/0067108 Al 3/2007 Bubhler et al.
7,945,528 B2 5/2011 Cytron et al. 2007/0067481 Al 3/2007 Sharma et al.
7,949,650 B2 5/2011 Indeck et al. 2007/0078837 Al 4/2007 Indeck et al.
7,953,743 B2 5/2011 Indeck et al. 2007/0094199 Al 4/2007 Deshpande et al.
7,954,114 B2 5/2011 Chamberlain et al. 2007/0118500 Al 5/2007 Indeck et al.
7,996,348 B2 8/2011 Pandya 2007/0130140 Al 6/2007 Cytron et al.
8,005,966 B2 8/2011 Pandya 2007/0174841 Al 7/2007 Chamberlain et al.
8,051,022 B2 11/2011 Pandya 2007/0209068 Al 9/2007 Ansari et al.
8,055,601 B2 11/2011 Pandya 2007/0237327 Al 10/2007 Taylor et al.
8,069,102 B2 11/2011 Indeck et al. 2007/0260602 Al 11/2007 Taylor

US 9,047,243 B2

Page 3
(56) References Cited WO 2008073824 Al 6/2008
WO 20101077829 7/2010
U.S. PATENT DOCUMENTS WO 2013090363 A2 6/2013

2007/0277036 Al 11/2007
2007/0294157 Al 12/2007
2008/0086274 Al 4/2008
2008/0109413 Al 5/2008
2008/0114724 Al 5/2008
2008/0114725 Al 5/2008
2008/0114760 Al 5/2008
2008/0126320 Al 5/2008
2008/0133453 Al 6/2008
2008/0133519 Al 6/2008
2008/0175239 Al 7/2008
2008/0243675 Al 10/2008
2008/0253395 Al 10/2008
2009/0182683 Al 7/2009
2009/0262741 Al 10/2009
2009/0287628 Al 11/2009
2010/0174770 Al 7/2010
2010/0198920 Al* 8/2010
2011/0040701 Al 2/2011
2011/0066832 Al 3/2011
2011/0125960 Al 5/2011
2011/0178911 Al 7/2011
2011/0178912 Al 7/2011
2011/0178917 Al 7/2011
2011/0178918 Al 7/2011
2011/0178919 Al 7/2011
2011/0178957 Al 7/2011
2011/0179050 Al 7/2011
2011/0184844 Al 7/2011
2011/0199243 Al 8/2011
2011/0231446 Al 9/2011
2011/0252008 Al 10/2011
2011/0295967 Al 12/2011
2012/0089496 Al 4/2012
2012/0089497 Al 4/2012
2012/0095893 Al 4/2012
2012/0109849 Al 5/2012
2012/0110316 Al 5/2012
2012/0116998 Al 5/2012
2012/0117610 Al 5/2012
2012/0130922 Al 5/2012
2012/0215801 Al 8/2012
2012/0246052 Al 9/2012
2013/0018835 Al 1/2013
2013/0086096 Al 4/2013
2013/0151458 Al 6/2013
2013/0262287 Al 10/2013
2013/0290163 Al 10/2013
2014/0025656 Al 1/2014
2014/0040109 Al 1/2014
2014/0067830 Al 3/2014
2014/0089163 Al 3/2014
2014/0164215 Al 6/2014
2014/0180903 Al 6/2014
2014/0180904 Al 6/2014
2014/0180905 Al 6/2014
2014/0181133 Al 6/2014
2014/0310148 Al 10/2014
2014/0310717 Al 10/2014

WO
WO
WO
WO
WO
WO
WO
WO
WO
WO

FOREIGN PATENT DOCUMENTS

2001080558

2003104943 A2
2004042560 A
2004042561 A
2004042562

2004042574 A
2005081855 A2
2005114339 A2
2006060571 A2
2007079095 A2

Chamberlain et al.

Singla et al.

Chamberlain et al.

Indeck et al.
Indeck et al.
Indeck et al.
Indeck et al.
Indeck et al.
Indeck et al.
Indeck et al.

Sistanizadeh et al.

Parsons et al.
Pandya
Taylor et al.
Jungck et al.
Indeck et al.
Pandya

Wongetal.cocoevnn 709/206

Singla et al.
Casselman et al.
Casselman
Parsons et al.
Parsons et al.
Parsons et al.
Parsons et al.
Parsons et al.
Parsons et al.
Parsons et al.
Parsons et al.
Fallon et al.
Buhler et al.

Chamberlain et al.

Wang et al.
Taylor et al.
Taylor et al.
Taylor et al.

Chamberlain et al.
Chamberlain et al.

Indeck et al.
Pandya
Indeck et al.
Indeck et al.
Taylor et al.
Pandya
Indeck et al.
Indeck et al.
Parsons et al.
Parsons et al.
Indeck et al.
Sugimoto et al.
Buhler et al.
Parsons et al.
Parsons et al.
Parsons et al.
Parsons et al.
Parsons et al.
Parsons et al.
Taylor et al.

Chamberlain et al.

10/2001
12/2003
5/2004
5/2004
5/2004
5/2004
9/2005
12/2005
6/2006
7/2007

OTHER PUBLICATIONS

Batory, “Modeling the Storage Architectures of Commercial Data-
base Systems”, ACM Transactions on Database Systems, Dec. 1985,
pp. 463-528, vol. 10, issue 4.

Chamberlain et al., “Achieving Real Data Throughput for an FPGA
Co-Processor on Commodity Server Platforms”, Proc. of 1st Work-
shop on Building Block Engine Architectures for Computers and
Networks, Oct. 2004, Boston, MA.

Chamberlain et al., “The Mercury System: Embedding Computation
Into Disk Drives”, 7th High Performance Embedded Computing
Workshop, Sep. 2003, Boston, MA.

Chamberlain et al., “The Mercury System: Exploiting Truly Fast
Hardware for Data Search”, Proc. of Workshop on Storage Network
Architecture and Parallel I/Os, Sep. 2003, New Orleans, LA.
Chaney et al., “Design of a Gigabit ATM Switch”, Washington Uni-
versity, St. Louis.

Choi et al., “Design of a Flexible Open Platform for High Perfor-
mance Active Networks”, Allerton Conference, 1999, Champaign,
IL.

Compton et al., “Configurable Computing: A Survey of Systems and
Software”, Technical Report, Northwestern University, Dept. Of
ECE, 1999.

Compton et al., “Reconfigurable Computing: A Survey of Systems
and Software”, Technical Report, Northwestern University, Dept. Of
ECE, 1999, presented by Yi-Gang Tai.

Compton et al., “Reconfigurable Computing: A Survey of Systems
and Software”, University of Washington, ACM Computing Surveys,
Jun. 2, 2002, pp. 171-210, vol. 34 No. 2, <http://www.idi.ntnu.no/
emner/tdt22/201 1/reconfig.pdf>.

Ebeling et al., “RaPiD—Reconfigurable Pipelined Datapath”, Uni-
versity of Washington, Dept. of Computer Science and Engineering,
Sep. 23, 1996, Seattle, WA.

Gokhale et al., “Reconfigurable Computing: Accelerating Computa-
tion with Field-Programmable Gate Arrays”, Springer, 2005, pp.
1-36.

Gokhale et al., “Reconfigurable Computing: Accelerating Computa-
tion With Field-Programmable Gate Arrays”, 2005, pp. 1-3,7, 11-15,
39, 92-93, Springer.

Koloniari et al., “Content-Based Routing of Path Queries in Peer-to-
Peer Systems”, pp. 1-19, E. Bertino et al. (Eds.): EDBT 2004, LNCS
2992, pp. 29-47, 2004, copyright by Springer-Verlag, Germany.
Mao et al., “Cluster-based Online Monitoring System of Web Traf-
fic”, Dept. of Computer Science and Technology, Tsinghua Univ.,
Bejing, 100084 P.R. China.

Necker et al., “TCP-Stream Reassembly and State Tracking in Hard-
ware”, School of Electrical and Computer Engineering, Georgia
Institute of Technology, Atlanta, GA.

Ratha et al., “Convolution on Splash 27, Proceedings of IEEE Sym-
posium on FPGAS for Custom Computing Machines, Apr. 19, 1995,
pp. 204-213, Los Alamitos, California.

Roy, “A bounded search algorithm for segmented channel routing for
FPGA’s and associated channel architecture issues”, IEEE, Nov. 11,
1993, pp. 1695-1705, vol. 12.

Taylor et al., “Dynamic Hardware Plugins (DHP): Exploiting
Reconfigurable Hardware for High-Performance Programmable
Routers”, Computer Networks, 38(3): 295-310 (16), Feb. 21, 2002,
and online at http:/www.cc. gatech.edu/classes/AY2007/
¢s8803hpc__fall/papers/phplugins.pdf.

Thomson Reuters, “Mellanox InfiniBand Accelerates the Exegy
Ticker Plant at Major Exchanges”, Jul. 22, 2008, URL: http://www.
reuters.com/article/pressRelease/idUS125385+22-Jul-
2008+BW20080722.

Yoshitani et al., “Performance Evaluation of Parallel Volume Ren-
dering Machine Re Volver/C40”, Study Report of Information Pro-
cessing Society, Mar. 5, 1999, pp. 79-84, vol. 99, No. 21.

* cited by examiner

U.S. Patent Jun. 2, 2015

Sheet 1 of 16

US 9,047,243 B2

Exchange, ECN, News, Compressed Feeds

o 1

_.- Ticker Plant

RDMA interconnect ¢

(\ 104

102

_- Application

1

Additional network
interfaces

Figure 1

102

L/

Application

1

Additional network

interfaces

U.S. Patent Jun. 2, 2015 Sheet 2 of 16

Exchange, ECN, News, Compressed Feeds

I S

_l- Ticker Plant

RDMA interconnect

US 9,047,243 B2

200

(.

|_ Connection
Multiplexer

RDMA interconnect

- Connection
Multiplexer

104
/‘ RDMA interconnect

102 102
102 K \
T

(L N
Application | —————- Application Application
Additional network Additional network Additional network
interfaces interfaces interfaces

Figure 2

102

g
o

Application

1

Additional network
interfaces

US 9,047,243 B2

Sheet 3 of 16

Jun. 2, 2015

U.S. Patent

¢ ainbi4

EELLEY] saoepalul saoepIaul EELLEIE]
3iomisu [euolippy 3HoMmiaU |Buolippy Jomiau [euoyippy Jlomiau [euolippy
uoneoddy | -————— uoljeol ddy uopeoyddy | -————— uoljeolddy
C N C)
6 ¢0lL # 201 201 20l
EESLEIEMT] LR]
108UUoIBII YINAY Jo_UUCaIBM] YINOY ﬁ sloMmisu [eUOIpPY 3ioMmiau |euoiippy
o o b -
Jaxajdin Iaxajdiyn|
co_ﬁ_e._w_s_\w ||||||||||||||||| co_ﬁ_m,._g___o_\w uopeolddy | -—---- uoljeol|ddy ™
l/ 20}
2oL
00z 002

103SUUOIRWI YINTOY

JosuuoIBUIl VIO \L

volL
Jaxajdynp Jaxa|diyinpy
uolppauuoy | T T T T T T T T T uo[198UU0YD
00¢
00¢
i 108UUCIRII YINOY

¥0l

eld J8Xdl] |'/

g

spaad pessaldwion ‘smaN ‘NDT ‘efueyoxg

US 9,047,243 B2

U.S. Patent Jun. 2, 2015 Sheet 4 of 16
400 404 410
C — -
Upstream DMA DMA Downstream
co?mection -4 |nterconnect |« Multi-class Distribution Engine [|nterconnect |[~t—m connections
Adapter(s) Adapter(s)
A 402 A A
4 408
200 f

L Shared Memory g:;?;:mi; -J

Data Record Cache R
ecords
A 4 \ 4 t Y 406
Control Plane -J
Figure 4
Exchange, ECN, News, Compressed Feeds
100 l l
AN Ticker Plant
104
RDMA interconnect (
500 501
\“ EdgeCache || - -———----------——- Edge Cache
502 502
Local Area Network r Local Area Network (
¢ 102 102 / 102 t 102
d | (C
Application | —————- Application Application [———--- Application

Additional network
interfaces

1

Additional network
interfaces

I

Additional network
interfaces

Figure 5

1

Additional network
interfaces

US 9,047,243 B2

Sheet 5 of 16

Jun. 2, 2015

U.S. Patent

R

HOMIDU [BUORIDPY

T

S0BMAU

HOMIBU [BUOBIPRY

.

uvoneaddy | - ————~ uonesiddy
zoL 0 0 ~ zo1
\ HIOMIBN B8JY |BOOT
208

00§

ayoe) obpg

009

Z0
HOMISN B3Iy SPIM

syoe) afipg

S N R
J

9 aunbi4
S80BBI EELEIEE] seoepe| Se0BIBIU|
Somisu [euohippy SHoMIBU [BUORIPPY Jlomisu [BUOlPPY SHomisU [BUORIPPY
uvopesyddy | -————~ uopnes|ddy uopeoyddy | - - - - - uopeoddy

SIoMION BalY 8207

MIOMIBN BAJY [B007 L

208 Z05

ayoe) abp3 ayoen 8bpg

005 00§

L 198ULOISIUl VINGY
weidaayorp | N\

4 ::::: ﬂ ool

spoad pessaidwor ‘smeN ‘NOT ‘ebueyoxg

0L

U.S. Patent Jun. 2, 2015 Sheet 6 of 16 US 9,047,243 B2
(400 r 404 r700
Upst DMA Message D "
pstream Interconnect |« Multi<class Distribution Engine -4 Interconnect ownstream
connection Ad connections
apter(s) Adapter(s)
A A 402 A A A A
Yy Y Y 408
Consumer
(’(Dstzaée“ Mg’gwyh Distribution —)
500 ata hecord Lache Records
i 406
Y \ 4 \ 4 \(Y
Control Plane
Figure 7
800 404 700
- - ¢
Ubst Message Message D "
coﬁieriitiignn Interconnect ~a—- Multi-class Distribution Engine - Interconnect ognwr:\:ci;irg
Adapter(s) Adapter(s)
A A A A A
Y A4 408
Consumer /
Memory o
(Data Record Cache Distribution
Records
/ 406
500 402 A ("
Y \ 4 A Y

Control Plane

Figure 8

US 9,047,243 B2

Sheet 7 of 16

Jun. 2, 2015

U.S. Patent

S30BU3UI

}10MBU [BUOHIPPY

-

uoljeoljddy

7

saoBLIB)uI
S0MIBU [RUCHIPPY

-

uoljealiddy

=

)

c0s

009

008

}JOMIBN Baly [BOOT
S80ES)U|
I0MBU [eUOHIPPY

-

6 94nbi14

saoeeuI
YiomjaU [BUOlIPPY

-

S80BLBJUI
HIOMISU [BUOIIPPY

o

sa0BU8UI
YIOM]aU [BUONIPPY

o

uonedl|ddy

-4

JOBUUQAIBIUI YIAIdN

ayoe) abp3]
uopediddy | -————— uonjeolddy uoneoyddy | -—————
J),)
¢0l 6 ¢0l 0 201 L <0
JI0MIBN BaNy 8PIA
v JIOMISN Baly |e00T L
(AN 1]
B o laxa|dniniy
8yoey abp3 8yoey abp3 UolioBULOT
00S 00¢
b 103UUOIBJUI YINON

vol

We|d Joxol]] 3\

% 0oL

spas4 pessaldwo) ‘smaN ‘NO3 ‘@bueyoxg

U.S. Patent Jun. 2, 2015 Sheet 8 of 16 US 9,047,243 B2
(\1002 S 404
Critical
— Transmission
1000 /\ Engine
1004 1008
| — L
Update || Adaptive L
—» Classification ——» Transmission |———— Scheduler —»
Engine | Engine]
1006
Metered 1
—» Transmission
Engine
Figure 10
1100
— 1104
producer consumer 1110
1106 —_— —/
i'\ p— read ptr
1108 —
write ptr > = 1114
RDMA data channel - J— -/
data to write 1112 J fing buter]
1102 J secondary
buffer
Figure 11
1204 1206 1208 1200
Lot v ! N 1108
unique token sequence length _)> Header
w 1210 —J
event data >> Event
J 1202
_/
checksum ;} Checksum 1212
unigue token 0 0 _f Blank header —’
K’1204

Figure 12

US 9,047,243 B2

Sheet 9 of 16

Jun. 2, 2015

U.S. Patent

¢l ainbig

ooel

coL

0¢r0x0

Aowaw paleys

|dv

MNYH uoljestidde Jawnsuoo

00 LX0 S0BMAUI JOaUUOdIAN|

sjsanbal uondiuosgns
JUAWYSI[IBISS UONI3ULIOD

0vr0%0 @ DLNI
B 070 LXQ

\

ooel

]

[

0rc0ox0

fowaw paseys

|dv

JNVI uoljesldde Jswnsuoo

961 0XD S0BLBIUI JOBUUCDIB|

0020X0 @ OLNI
B 9G1L0X0

oocl

0010x0

fowasw paseys

|dV

go4g uopesydde Jawnsuoo

¥1.00X0 S0BHI JOBUUODII|

08100 @ DLNI
‘BIM 7100%0

90y
3

sue|d [oJuoD

'

| 08£0%0 = osyo ‘'sAsS Nl |

00Z0X0 = JosJo “1dvY iz al
0800%0 = 12840 "OLNI L Al | N\

00L0X0 = }osgo ‘Wel 0 Al OLEL
§]9SH0 pI003I
ZieL —S
00F0X0 = 921 ‘0ZF0X0 = 8seq QP01 X0 = 8saippe HMNYH N 4l ._\ ~

coel

000X0 = 9IS '0FZ0X0 = 9SEJ 9G10X0 = SSAIPPE. ‘INVI L Al T ~

g

441

. : : coel
0010X0 = 9IS ‘001 0X0 = 8SBq 'Y LO0X0 = ssalppe 'gdog :0al T ™~
9]¢} $SaIPPE JAWNSUOD cogl

80¢€L — ™~
SPJ009Y uonNquisig JudlID 20V
0 N ‘L ‘0 sQ| J8wnsuo)
0}(DLNI) | QI pioday

auibua uoissiuisuel} aajdepy F

]

o0~/ H 90€}

8oB0 PI0d3l Blep AIOWBW paleys

A

) sajepdn pIodal slIHESY

coy D) &

voel

US 9,047,243 B2

Sheet 10 of 16

Jun. 2, 2015

U.S. Patent

¥l 2anb14

o[

-

ooel

|

02r0xo

Alowaw paleys

Id¥

YNYH uopeoydde 1swnsuos

OP01LX0 S9BHSIUI PBULOIBYU|

gysonbal uopdiosgns
JUeLIYsI|qE}SD UOIBUU0D

0Z90%0 @ OLNI
R 0V0LX0

c0l

NOLEL

\

00€l

7

woo]

[Z40]

Mowaw pareys

Id¥

INYr uoiesydde 1swnsuoo

QG L.OX0 92BNl JORUUODIRW|

0rZ0X0 @ O1NI
BM 9510%0

c0l

[olo]>y%

|

woo |

001.0%X0

Mowaw paleys

IdY

g0g uoneoydde Jewnsuod

PL0O0X0 SVBLAIU JORULOABIU|

0810X0 @ OLNI
SIM LOOX0

e

c0L

\' (44

aue|d joJju0D

[oszox0=

19840 “TNLY N Al

7 089€0%X0 = 19840 'SASS ‘N Al

— 00Z0X0 =39sy0 'OLNI ‘2 al

00Z0%0 = 19540 "1dvv ‘2 al

0200%0 =39s40 ‘ang ‘1 Al

0900%0 =18s)0 'OLNI L dl 17 \

00L0X0 =

19sy0 ‘wHug [0 al

0010%0 = 19540 'Wg| 0 °0LEL

s]asyjo N Jawnsuod

NZLEL

) 0zLel —

S]9840 (JoWNSU0D

7 00£0X0 = 92l ‘0ZPOX0 = 9SE] OPOLX0 = SSRIPPE WNYH :N Al .A\ \

c0EL

0020XQ = 92!s '0pT0X) = ©5Bq 9510%Q = SS3IPPE “INYr L dl T ~

00P0X0 = 92Is ‘00L0X0 = 9sBq ‘P LO0X0 = sselppe 'd0d :0 dl ‘// coel
©[qe} $S8IPPE JOWINSUOD z0eL
g0e) ——
spioooy UINGUISI] WRID —
0 N go0v
N ‘L ‘0 sQI Jswnsuoen

eulfue uolssilusuel] eadepy

o} (OLND) L QI p1ovey

=

¥00L

syses pIassl Blep Alowew paleys

A!4 r Q0¢l

]
(4014 L

" sejepdn piooel swp-Eey

J

01

U.S. Patent

Jun. 2, 2015

Sheet 11 of 16

US 9,047,243 B2

1504

(

Shared Memory Base Pointer
) 0x0100 |

/
Address computation /
Subscription Descriptor Table

1502

Application

Record offset lookup

(base + offset):
0x0100 + 0x0080 =

0x0180 / ID 0: IBM, offset = 0x0100

//7\ Read INTC

ID 1: INTC, offset = 0x0080

A/

Receive current record

ID 2: AAPL: offset = 0x0200

for INTC
4

/

/

| ID N: S5Y8, offset = 0x0380

1300 h
Shared memory region Coherency Checking f//
0x0100
DMA writes / Q
from producer 7//// 1708
Ox0014 Wiite: : record read result
INTC @ 0x0180 ;
[oo
Figure 15
1602
Bid arra
1600 y ——J
K 1608
Bid array checksum —
1604

Common info

N

1610

Common info checksum

(

Offer array

1606

\

1612

Offer array checksum

L

Figure 16

US 9,047,243 B2

Sheet 12 of 16

Jun. 2, 2015

U.S. Patent

10100A

B}[8P UM "D LNI 40}
pJ098.4 JUBLIND 8AI808Y

OLNIPESY |

peiepdn O1N|

.

uoneslddy

0810X0 ® (QLNI) L Al
"8I 7 L00X0

A

uoifai Alowsw paleys

Ll @inBi4
v0LL
3
!
8yoe) peay ise 44¥0X0
jInsal peal piodal
0.1 A -
//_ Y
uosiedwo) eyeq
] 0010%0
R\ Bunjosyy Aousieyon L
= 00€}
801

_ 3S7V4 = pelepdn ‘0E0X0 = 1880 ‘'SASS ‘N dI _

INY L = peyepdn ‘00zZ0OX0 =Jesyo dvy 2 dl

3Ny L = peiepdn ‘0800X0 = 18sYo 'O 1NI 1 Al

3357v4 = pejepdn ‘00LOX0 =1esyo ‘W4l :0 al

p a|qe] Joiduosaeq uonduuosgng

N3 00] }8S10 p100d
300] 18810 p. 2| Z0S1)
vost | 0010X0 [
- Jajuiod esegq AIows}y paleys
01607 uonesynoN eyepdn

0810X0
300%0 + 0010X0

pejepdn | Q|

§
0.1)

sonpoud wo.y
sajum YN

US 9,047,243 B2

Sheet 13 of 16

Jun. 2, 2015

U.S. Patent

JOJ90A

e}ap yum ‘O NJ 10}
PJ0281 JUBLIND BAIBOSY

O1NI PEdY |

pajepdn DIN|

N

20°0$ <V @oud
OLNI usum AyoN. |

gl ainbi4

|

—t

0Ll

ayaen peay jse

J

A

\

uosuedwo] ejeq

Jnsel peal p1oosl

Y

9041 k_ m\

Bunyoayn Asualayon

44100
081L0X0 ® (OLNI | al
B 7100X0
| [ieonposd woyy
sem YINd
00L0X0

uoibai Alowsw paieys
\

J
8041 —

/

00€l

| 35714 = pajepdn ‘08g0X0 = 19SH0 ‘SASS N I |

0810%0

3NYL = pajepdn ‘0020X0 = 19SH0 1dVYY 2 Al

nwooxo+oovoxo
-(Josyo + oseq) \

3NYL = pajepdn ‘0800X0 = 19SY0 ‘O1NI 3L A

ugieindwods ssauppy

3S7Tv4 = pajepdn ‘00LOX0 =39syo ‘Nl 0 Al

\\
dnyjoo) J9s0 p1osay

N_\w_\\/

\
91607 J8y14
uonesyioN eepdn

e A

a|qe | Joyduosaq uonduosqng

c0s1 —

yogl |

0010%0

/\LQ:_OQ_ aseqg Alows|y paleys

01607 uoeoynoN eepdn
\

pajepdn | Q|

)

uonesjddy

oogl —)

(404

U.S. Patent Jun. 2, 2015 Sheet 14 of 16 US 9,047,243 B2

1006 ,.\ (\ 1900 (1908

i

Metered Queue 1902
- Metering Engine K
g 9 Eng > Real-time &
1904 T
metered events

Fanout Engine —

Real-time

events '
—> Claseit ‘j]]]J—>
Classifier ‘ o

Real-time Queue 1906

Subscription Manager
Control Plane

Subscribe/refresh A
th
request/response 1910 _)

Subscribefunsubscribe requests

Figure 19

2008
1900 —
2000
2004
T /
Y
i Timing
:I:I:D_> Data item Global Dirty? Wheel To Metered Queue
record table I
20027 L
2002 /
2002
Pre-client data vector
Data-item index
Global dirty bit LT T T 1]
Global last time
Data record image Data-itern pointer
Data image size dirty bit
last time

Client meter rate
Client data

Figure 20

U.S. Patent

Jun. 2, 2015

Sheet 15 of 16

1300

Shared memory region

DMA writes from

Last Read Cache

producer 1502

US 9,047,243 B2

[\ 1704

—

1708

]

\

7

1504

Subscription Descriptor Table

Coherency Checking

L—)» Shared Memary Base Pointer

Delta Comparison

2102

1702
Y | -

1802

: :] Update Notification
/ Update Notification Logic P Filter Logic __/
DMA
Interconnect API 2106
Adapter (éfﬂt_)ad System Interconnect Interface | /
ngine

1706

2100

Consumer system interconnect 2108
J API engine driver +—
2104
thin API 2110
~T———
Application -7
102

Figure 21

U.S. Patent

DMA, writes from

Jun. 2, 2015

1300

Shared memory region ___)

Sheet 16 of 16

US 9,047,243 B2

! ¢ 2100

‘ S/

1706

producer
[\ 1704
|:| Last Read Cache
2102 1502 A A 1708
\ v
<)
DMA Subscription Descriptor Table Coherency Checking

Interconnect

Adapter

‘ Shared Memory Base Pointer | .
Delta Comparison

FWOZ 1504 —/

1802

Update Notification Logic

Update Notification /

2106

Filter Lagic
API
Offload System Interconnect Inten‘acL_/
Engine

Consumer system interconnect 2108
- N ./
2104 API engine driver
o 2110
thin API ~l
Application -]
102

Figure 22

US 9,047,243 B2

1
METHOD AND APPARATUS FOR LOW
LATENCY DATA DISTRIBUTION

CROSS REFERENCE AND PRIORITY CLAIM
TO RELATED PATENT APPLICATIONS

This patent application claims priority to U.S. Pat. App.
Ser. No. 61/570,670, filed Dec. 14, 2011, entitled “Method
and Apparatus for Low Latency Data Distribution”, the entire
disclosure of which is incorporated herein by reference.

This patent application is related to U.S. Pat. Nos. 7,840,
482, 7,921,046, and 7,954,114 as well as the following pub-
lished patent applications: U.S. Pat. App. Pub. 2007/0174841,
U.S. Pat. App. Pub. 2007/0294157, U.S. Pat. App. Pub. 2008/
0243675, U.S. Pat. App. Pub. 2009/0182683, U.S. Pat. App.
Pub. 2009/0287628, U.S. Pat. App. Pub. 2011/0040701, U.S.
Pat. App. Pub. 2011/0178911, U.S. Pat. App. Pub. 2011/
0178912, U.S. Pat. App. Pub. 2011/0178917, U.S. Pat. App.
Pub. 2011/0178918, U.S. Pat. App. Pub. 2011/0178919, U.S.
Pat. App. Pub. 2011/0178957, U.S. Pat. App. Pub. 2011/
0179050, U.S. Pat. App. Pub. 2011/0184844, WO Pub. WO
2010/077829, and U.S. patent application Ser. No. 13/316,
332, entitled “Method and Apparatus for Managing Orders in
Financial Markets”, filed Dec. 9, 2011, and published as U.S.
Pat. App. Pub. 2012/0246052, the entire disclosures of each
of which are incorporated herein by reference.

INTRODUCTION

Distributing large volumes of data is a key challenge for
computing and information systems of any appreciable scale.
The exemplary embodiments of the invention disclosed
herein apply to a vast spectrum of applications that would
benefit from low-latency delivery of large volumes of data to
multiple data consumers. These embodiments fundamentally
address the practical problems of distributing such data over
bandwidth-limited communication channels to compute-lim-
ited data consumers. This problem is particularly acute in
connection with real-time data. Real-time data distribution
systems must contend with these physical limits when the
real-time data rates exceed the ability of the communication
channel to transfer the data and/or the ability of the data
consumers to consume the data. Furthermore, the distribution
of real-time financial market data to applications such as
trading, risk monitoring, order routing, and matching engines
represents one of the most demanding contemporary use
cases. While many of the exemplary embodiments discussed
herein focus on applications in the financial markets, it should
be understood that the technology described herein may be
applied to a wide variety of other application domains.

Many underlying technologies exist for computer commu-
nications. An exemplary list of computer communication
channels is as follows: processor to processor interconnects,
shared registers, shared memory, on-chip buses, system
buses, “memory fabric” networks, frame-based networks,
packet-based networks, etc. We refer to a task as an applica-
tion or component of an application that may produce or
consume data. For example, a task running on one processor
core may communicate with a task running on another pro-
cessor core on the same die (chip) via a direct physical inter-
connection between the processor cores. Similarly, a task
running on one processor core may communicate with a task
running on another processor core in a different computing
system via a frame-based network. The invention described
herein can leverage a wide variety of computer communica-
tion channels.

10

15

20

25

30

35

40

45

50

55

60

2

Traditional communication protocols are built on the idea
of'sending messages (cells, frames, or packets) from one task
to another. Typically, messages are transferred from an output
queue of the producing task to an input queue of the consum-
ing task. This style of communication protocol is effective for
event-based data distribution, where receipt of every real-
time event is required by the consuming applications. Note
that this style of communication protocol requires the data
producer to transmit every message and it requires data con-
sumers to receive and process every message. Message-based
protocols may provide features such as inter-network routing
and multicast. Inter-network routing allows messages to
traverse disparate networks in order to reach data consumers.
Multicast allows data producers to transmit one copy of a
message that is distributed to multiple consumers. Replica-
tion of the message is performed by network infrastructure as
the message transits the network. Note that various protocols
also provide features to contend with physical constraints
such as finite link bandwidth or finite processing resources for
data producers and consumers. When these physical limits
are reached, protocols typically choose to delay the messages
(by queuing at the producer and/or consumer), drop the mes-
sages (and optionally retry the transfer), or summarize the
pending messages into a smaller number of messages to
reduce the resources required to perform the transfer.

The latter option, also known as conflation, has a number of
benefits for applications that can tolerate this message con-
solidation. Firstly, it reduces the number of messages that
must be transferred. Secondly, it has the ability to deliver
more quickly the most current data to the consumer. Consider
a queue containing multiple messages with the current price
for a financial instrument. The message at the tail of the queue
represents the most current price. If all the messages in the
queue must be transtferred across the communication channel
and processed by the consumer, then significant resources
(bandwidth and processing cycles) are consumed prior to the
consumer receiving the most current price for the financial
instrument. It is important to note that in many application
domains, some data items are amenable to conflation (such as
the most current price) while other data items are not (such as
a trade cancellation notice).

Conventional financial market data delivery systems uti-
lize protocols or “messaging systems” that typically include
feedback loops that exist between the producer of a data
stream and the immediate consumers of that data stream. This
feedback loop is required by the producer so it can adjust its
outward flow rate to match that of each consumer. The flow
adjustment is needed so that no essential update events (that
represent state transitions, trade reports, etc.) are lost between
producer and consumer by overrunning the consumer, with
the end result that data received and maintained by the con-
suming systems is always in a consistent and coherent state.
Legacy market data platforms typically use both unicast and
multicast communication protocols between producer and
consumer components.

The term “financial market data” as used herein refers to
data contained in or derived from a series of messages that
individually represent a new offer to buy or sell a financial
instrument, an indication of a completed sale of a financial
instrument, notifications of corrections to previously-re-
ported sales of a financial instrument, administrative mes-
sages related to such transactions, and the like. Feeds of
messages which contain financial market data are available
from a number of sources and exist in a variety of feed
types—for example, Level 1 feeds and Level 2 feeds. Fur-
thermore, as used herein, a “financial instrument” refers to a
contract representing an equity ownership, debt, or credit,

US 9,047,243 B2

3

typically in relation to a corporate or governmental entity,
wherein the contract is saleable. Examples of financial instru-
ments include stocks, bonds, options, commodities, currency
traded on currency markets, etc. but would not include cash or
checks in the sense of how those items are used outside the
financial trading markets (i.e., the purchase of groceries at a
grocery store using cash or check would not be covered by the
term “financial instrument” as used herein; similarly, the
withdrawal of $100 in cash from an Automatic Teller
Machine using a debit card would not be covered by the term
“financial instrument” as used herein).

Multicast communication protocols are able to deliver an
event to multiple receivers simultaneously, but also have
negative characteristics. A producer must not transmit data at
a rate higher than the slowest consumer, otherwise “re-trans-
mission storms” can result that impact all consumers. Part of
the aforementioned feedback loop is often a configuration
setting in the producer to limit the data flow rate to a value
determined empirically by monitoring the consumption rate
of a group of consuming applications. Furthermore, even
though events are delivered simultaneously to multiple con-
sumers, it comes at a cost of imposing extra work on each
consumer. Increasing the subscription load of one consumer
places an extra burden on every other consumer as they are
forced to filter additional, unwanted transactions from the
multicast stream.

Unicast communication protocols have characteristics that
move this extra processing overhead burden from consumer
to producer. Each consumer receives events for only the
financial instruments for which it has expressed an interest
with the producer, minimizing the computational overhead
induced on each consumer. However, a producer must send an
independent copy of a particular transaction event to each
consumer that has registered interest in that item, imposing an
extra burden on the producer and increasing the network
bandwidth needed to carry the aggregated traffic. Further-
more, the unicast communication protocol (such as TCP)
provides a direct feedback mechanism between consumer
and producer, allowing the producer to limit the data flow rate
s0 as to not overrun the consumer. But this can place an
additional processing burden on the producer to manage the
event buffers and traffic flow independently for each con-
sumer.

Another style of communication protocol is Direct
Memory Access (DMA). Instead of sending messages
(frames or packets) between data producers and consumers,
data may be accessed directly from the physical memory of
the data producer or transferred directly to the physical
memory of the data consumer. In a DMA “read” operation,
the consumer reads data directly from a memory region in the
producer. Note that it is possible for this read operation to be
performed without participation (and thus processing
resources consumed) by the producer. Similarly in a DMA
“write” operation, the producer writes data directly to a
memory region in the consumer. It is also possible for this
write operation to be performed without participation (and
thus processing resources consumed) by the consumer. This
allows the data producer to transmit data at a maximum rate
(required to minimize overall data latency) that is irrespective
of'the rate at which the consuming systems are able to process
incoming messages. The data flow rate of the producer is
effectively decoupled from the data flow rate of the consumer.
Note that DMA transfers may occur “locally” between pro-
ducers and consumers within the same system, LDMA. DMA
transfers may also occur “remotely” between producers and
consumers in disparate systems, RDMA.

15

25

30

40

45

50

4

While the transfer of data from memory region to memory
region is enabled by DMA protocols, ensuring that the trans-
action is complete and the data is coherent is left to upper-
layer protocols or the application. DMA protocols typically
ensure that read/write transactions to the same addressable
memory location do not collide. For example, a data producer
may be writing to memory location 0x2983 in its memory
region while a data consumer is attempting a DMA read
transaction to memory location 0x2983. The DMA protocol
typically specifies how these cases are handled, e.g. the read
is blocked until the write completes then the read is allowed.
In many applications, an atomic unit of data such as a record
for afinancial instrument spans multiple addressable memory
locations. For example, memory may be long-word (64-bit)
addressable, but the atomic unit of data for an application may
be 256 bytes, typically stored in 32 contiguous memory loca-
tions.

It is also important to note that when an application issues
aread or write transaction for an atomic unit of data that spans
multiple memory locations, the underlying memory sub-
system in modern computing systems may fragment and re-
order the transactions to individual physical memory loca-
tions. This is of particular concern in multi-processor systems
that utilize Non-Uniform Memory Access (NUMA) architec-
tures. For example, if an application issues a read transaction
for 256 bytes of data starting at memory location 0x0100, the
underlying memory subsystem may fragment and re-order
the transaction into the following read transactions: read 128
bytes @ 0x0110, read 64 bytes @ 0x100, then read 64 bytes
@ 0x0108. A higher layer protocol or the application must
ensure that the data retrieved from a DMA read transaction
represents a coherent view of the atomic unit of data.

A characteristic of conventional market data distribution
systems is a layered architecture used to achieve wider scale
distribution. A number of data producers residing in a first
layer of the architecture publish one or more data streams
using a multicast or unicast communication protocol that are
received by components within an intermediate layer of the
architecture. The intermediate layer components in turn pub-
lish data streams using the same or different communication
protocol to another layer of the architecture, and so on, with
end-consumer applications forming the final layer of the
architecture.

The use of RDMA read communication protocols for the
transfer of real-time financial market data has recently
emerged. Utilization of DMA read techniques represents an
improvement over prior state of the art by eliminating the
extra processing burden placed on consumers arising from the
consumers’ use of multicast communication protocols, as
well as the extra processing burden placed on producers that
use unicast communication protocols. In a proto-typical mar-
ket data platform, feed handler components are hosted on a
set of disparate computing systems (typically enterprise-class
servers). A given feed handler component maintains a nor-
malized record for each financial instrument for which it
receives an update. This set of records may be stored or copied
to a memory region that consuming applications may read via
RDMA read transactions. Typically, this requires that con-
suming applications continuously issue read transactions in
order to determine if new data is available, also known as
“polling” or a “memory pull” paradigm. In addition to the
potential waste of bandwidth and processing resources, the
memory pull paradigm adds latency to the delivery of data to
the consumer by introducing a round-trip delay across the
RDMA transport channel.

Existing systems that utilize unicast, multicast, conflation,
and/or DMA read protocols typically implement them in

US 9,047,243 B2

5

software running on traditional general-purpose processors
that function as the main CPUs of the system servers (al-
though multi-threaded implementations that separate pro-
cessing from transmit/receive functions are common). This
arrangement increases the overhead in terms of processing
resources (that could otherwise be used for applications),
time (added latency in data transfers), space and power.

Against this background, it is desirable for new technology
to further reduce latency, increase scale (wide distribution),
and reduce the utilization of compute resources (so these
computer resources can be freed for devotion to other tasks).

Exemplary embodiments of the invention described herein
include mechanisms that provide for the construction of real-
time data distribution systems that meet any or all of follow-
ing goals, or any combination thereof:

1. Reduced data latency

2. Scalability for large numbers of data consumers

3. Reduced power consumption

4. Reduced space consumption

5. Reduced management complexity and cost

6. Well-defined component interfaces

7. Independent deployment of components

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts an exemplary direct connect distribution
architecture.

FIG. 2 depicts an exemplary RDMA distribution architec-
ture with connection multiplexers.

FIG. 3 depicts an exemplary multi-tier RDMA distribution
architecture with connection multiplexers.

FIG. 4 depicts an exemplary connection multiplexer.

FIG. 5 depicts an exemplary distribution architecture over
Local Area Networks (LLANs) with edge cache appliances.

FIG. 6 depicts an exemplary distribution architecture over
LANs and Wide Area Networks (WANs) with edge cache
appliances.

FIG. 7 depicts an exemplary edge cache appliance with
data ingest via DMA interconnect.

FIG. 8 depicts an exemplary edge cache appliance with
data ingest via message interconnect.

FIG. 9 depicts an exemplary hybrid distribution architec-
ture with connection multiplexer and edge cache appliances.

FIG. 10 depicts an exemplary multi-class distribution
engine.

FIG. 11 depicts an exemplary embodiment for critical data
distribution with data producers and consumers.

FIG. 12 depicts an exemplary consumer ring entry format.

FIG. 13 depicts an exemplary embodiment for adaptive
data distribution using a common shared memory map.

FIG. 14 depicts an exemplary embodiment for adaptive
data distribution using per-consumer shared memory maps.

FIG. 15 depicts an exemplary application programming
interface (API) for a consumer in an adaptive distribution
scenario.

FIG. 16 depicts an exemplary multi-part record for finan-
cial order books.

FIG. 17 depicts an exemplary API with notification logic
for a consumer in an adaptive distribution scenario.

FIG. 18 depicts an exemplary API with notification filter-
ing for a consumer in an adaptive distribution scenario.

FIG. 19 depicts an exemplary metered transmission
engine.

FIG. 20 depicts an exemplary metering engine.

FIG. 21 depicts an exemplary API offload engine.

FIG. 22 depicts another exemplary API offload engine.

10

15

20

25

30

35

40

45

50

55

60

65

6
DETAILED DESCRIPTION

FIG. 1 shows a diagram of a “direct connection” distribu-
tion architecture for financial market data distribution. In this
exemplary figure, the ticker plant 100 is the data producer,
distributing normalized, enriched, and filtered market data to
subscribing applications 102.

Exemplary technology that can be employed for such a
ticker plant 100 can be found in U.S. Pat. Nos. 7,921,046 and
7,840,482, the following published patent applications: U.S.
Pat. App. Pub. 2009/0182683, U.S. Pat. App. Pub. 2011/
0040701, U.S. Pat. App. Pub. 2011/0178911, U.S. Pat. App.
Pub. 2011/0178912, U.S. Pat. App. Pub. 2011/0178917, U.S.
Pat. App. Pub. 2011/0178918, U.S. Pat. App. Pub. 2011/
0178919, U.S. Pat. App. Pub. 2011/0178957, U.S. Pat. App.
Pub. 2011/0179050, U.S. Pat. App. Pub. 2011/0184844, and
WO Pub. WO 2010/077829, and U.S. patent application Ser.
No. 13/316,332, entitled “Method and Apparatus for Manag-
ing Orders in Financial Markets”, filed Dec. 9, 2011, and
published as U.S. Pat. App. Pub. 2012/0246052, the entire
disclosures of each of which are incorporated herein by ref-
erence. Typically, one or more client applications 102 are
hosted on a host (e.g., a computer system with one or more
processors, associated memory, network interfaces, etc.). In
this example, the client hosts and the ticker plant are equipped
with interface adapters to an RDMA capable interconnect
104 (e.g. InfiniBand fabric, Ethernet network, or cabled PCI
Express bus). As described in the above-referenced and incor-
porated patents and patent applications, client applications
typically gain access to data via an application programming
interface (API).

Client applications 102 may retrieve static snapshots of
current data for financial instruments or current derived views
of data for financial instruments from the ticker plant 100. In
this use case, the API issues DMA read requests to the ticker
plant for the record of interest. As described in the Introduc-
tion, this distribution model of clients issuing DMA read
requests is suitable when latency is not critical, the client host
has sufficient compute resources to issue read requests, and
the ticker plant and RDMA interconnect 104 is capable of
servicing the aggregate rate of read requests from all con-
nected clients.

Clients may also subscribe to continuous real-time updates
of current data (or derived views) for financial instruments. In
this use case, the APl issues subscription requests to the ticker
plant for the instruments and/or derived views of interest. The
ticker plant responds with delivery of the current view of the
instrument and real-time delivery of subsequent real-time
updates. Subsequent sections describe methods for distribut-
ing multiple-classes of real-time data updates via DMA inter-
connects to data consumers. In preview, the ticker plant can
write updates directly to shared memory in the client host.
The means of transfer depends upon the class of data (critical,
adaptive, or metered) and the presence of congestion on the
DMA interconnect. We also describe multi-class data deliv-
ery via traditional message-based interconnects.

Note that the physical components in the interconnection
network—the adapter in the ticker plant, interconnect media
(e.g. cables), interconnect switches, and adapters in the client
hosts—place practical constraints on the number of transfers
per second that can be distributed from the ticker plant to
client applications. This aggregate publishing rate is be
shared among the set of connected applications when using
unicast (point-to-point) distribution. The ticker plant can
transmit a unique copy of each update to each interested
application. (Note that we describe multicast distribution via
DMA in a subsequent section.) The ticker plant also has a

US 9,047,243 B2

7

finite limit on the number of client connections it can maintain
due to the per-connection state that must be maintained.
These and other physical constraints limit the maximum
number of client connections that can be supported in a
“direct connection” architecture.

FIG. 2 shows a diagram of an exemplary inventive multi-
tier architecture for real-time data distribution via DMA inter-
connect. Connection multiplexers 200 effectively multiplex
multiple downstream application connections into a single
upstream “connection”. This allows the number of applica-
tions 102 that may be reached via DMA interconnect to be
dramatically increased. The connection multiplexer 200
establishes a single connection to the ticker plant 100. The
connection semantics are identical to a “direct connection”
application. The connection multiplexer 200 provides the
same connection semantics as the ticker plant 100 to down-
stream clients (either client applications 102 or connection
multiplexers 200). Note that this architecture removes the
physical constraints limiting the number of serviceable client
applications 102. The number of DMA interconnects
increases. For example, assume that a single instance of a
DMA interconnect can support 40 client applications. By
utilizing a multi-tier architecture with connection multiplex-
ers, multiple discrete DMA interconnects can be used. Simi-
larly, the amount of replication performed by the ticker plant
for unicast delivery is significantly reduced.

FIG. 3 shows a diagram of an exemplary multi-tier archi-
tecture for real-time data distribution via DMA interconnect
that utilizes multiple tiers of connection multiplexers 200 to
increase the number of connected client applications 102.

During connection establishment, user authentication and
entitlement checks may be performed. In one embodiment,
the connection multiplexer 200 forwards application login
credentials to the root ticker plant 100. The root ticker plant
100 authenticates the client and looks up the client’s entitle-
ments, a specification of what data items the client is allowed
to request. The ticker plant responds to the connection mul-
tiplexer with a login rejected response or a login accepted
response with accompanying listing of entitlements for the
client application. The connection multiplexer maintains a
record of the client’s entitlements to reference when subse-
quent data requests/subscriptions are received from the client.
In another embodiment, the set of client entitlements is main-
tained exclusively on the ticker plant 100 and all requests for
new data items are forwarded to the ticker plant for entitle-
ment checks. In yet another embodiment, the connection
multiplexer 200 performs the client authentication and
entitlement checking. The connection multiplexer 200 is pro-
vided access to the database of user credentials and associated
entitlements. Note that this may be downloaded from the
ticker plant 100 when the connection multiplexer establishes
its connection to the ticker plant. In both embodiments, the
ticker plant may interface to an entitlement system that stores
and manages the username/password/entitlements relation-
ships.

The connection multiplexer 200 can maintain a cache that
represents the aggregate set of subscribed items for all con-
nected applications. When real-time updates are received
from the ticker plant, the associated record in the connection
multiplexer cache is updated and the real-time update is
propagated to subscribed applications via the downstream
DMA interconnect. When applications connected to the con-
nection multiplexer request a new data item, the connection
multiplexer checks to see if the client is entitled to access the
data item. This entitlement check may be performed in the
connection multiplexer or forwarded to the ticker plant, per
the aforementioned embodiments. If the client is entitled to

10

15

20

25

30

35

40

45

50

55

60

65

8

access the data item, the connection multiplexer checks to see
if another connected application has an existing subscription
to the real-time data item. If an existing subscription exists,
then the connection multiplexer generates an initial refresh
image of the data item and transmits it to the client applica-
tion. The connection multiplexer also adds the client applica-
tion to the list of subscribers for the data item. Note that an
“interest list” is maintained with each data item record in the
connection multiplexer cache. If the application is the first to
request a given data item, the connection multiplexer for-
wards the request upstream. When the initial refresh for the
data item is received, it is stored in the connection multiplexer
cache. The requesting application is added to the list of sub-
scribers, and the refresh is transmitted to the requesting appli-
cation. The application now receives all subsequent real-time
updates for the data item, along with the other subscribed
applications.

A block diagram of an exemplary connection multiplexer
200 is shown in FIG. 4. One or more DMA interconnect
adapters 400 ingest data from an upstream source, either a
ticker plant or connection multiplexer. Input data is directly
written to shared memory 402 in the connection multiplexer.
In one embodiment, the input data written to the shared
memory is in the same format as the data to be distributed to
downstream clients. In this embodiment, the shared memory
region can also serve as the record cache for the connection
multiplexer. The Multi-Class Distribution Engine (MDE) 404
is responsible for:

1. Receiving notifications of updates to the shared memory
data record cache from the input DMA interconnect
adapter(s)

2. Retrieving data associated with updates and performing
any necessary coherency checks prior to transmission

3. Transmitting data to subscribed downstream consumers
based on the class of data and per-consumer connection
state.

Rules governing the classification of data may be option-
ally configured via the Control Plane 406. Per-consumer con-
nection state is maintained in the Consumer Distribution
Records (CDR) 408. The functionality of the MDE is
described in subsequent sections. The information stored in
the CDR is also described in subsequent sections. In the
preferred embodiment of the connection multiplexer, the
MDE supports the Critical and Adaptive classes of data trans-
mission via Direct Memory Access (DMA) interconnect. In
general, eliminating support for unused (or underused)
classes of data transmission (such as the Metered class) can
lead to a more efficient implementation of the connection
multiplexor.

The control plane 406 is responsible for the following:

1. Configuring the various datapath components; this
includes configuring the data classification rules and
transmission parameters for the Multi-Class Distribu-
tion Engine

2. Reading status and statistics values from each compo-
nent; reporting status and statistics to local/remote log
files and external monitoring applications

3. Performing connection and subscription processing as
previously subscribed

The connection multiplexer may be implemented in a vari-
ety of ways. It may be implemented using standard intercon-
nect adapters, general-purpose processors (GPPs), and soft-
ware. Higher capacity and lower latency may be achieved by
employing chip-multi-processors (CMPs), graphics proces-
sors (GPUs), and/or reconfigurable logic.

As used herein, the term “general-purpose processor” (or
GPP) refers to a hardware device having a fixed form and

US 9,047,243 B2

9

whose functionality is variable, wherein this variable func-
tionality is defined by fetching instructions and executing
those instructions, of which a conventional central processing
unit (CPU) is a common example. Exemplary embodiments
of GPPs include an Intel Xeon processor and an AMD
Opteron processor. As used herein, the term “reconfigurable
logic” refers to any logic technology whose form and function
can be significantly altered (i.e., reconfigured) in the field
post-manufacture. This is to be contrasted with a GPP, whose
function can change post-manufacture, but whose form is
fixed at manufacture. Furthermore, as used herein, the term
“software” refers to data processing functionality that is
deployed on a GPP or other processing devices, wherein
software cannot be used to change or define the form of the
device on which it is loaded, while the term “firmware”, as
used herein, refers to data processing functionality that is
deployed on reconfigurable logic or other processing devices,
wherein firmware may be used to change or define the form of
the device on which it is loaded.

Thus, in embodiments where one or more components of
the connection multiplexer is implemented in reconfigurable
logic such as an FPGA, hardware logic will be present on the
device that permits fine-grained parallelism with respect to
the different operations that such components perform,
thereby providing such a component with the ability to oper-
ate at hardware processing speeds that are orders of magni-
tude faster than would be possible through software execution
on a GPP.

In the preferred embodiment, the Multi-class Distribution
Engine 404 is implemented in one or more reconfigurable
logic device(s). Preferably, the reconfigurable logic device(s)
have direct access to high-speed memory for the Shared
Memory Data Record Cache and the Consumer Distribution
Records. Preferably, direct access to the high-speed memory
for the Shared Memory Data Record Cache is also provided to
the upstream DMA adapter 400. Preferably, the upstream
DMA adapter 400 communicates directly to the reconfig-
urable logic device(s) via a dedicated interconnect or high-
speed system bus. Similarly, the reconfigurable logic
device(s) communicate directly to the downstream DMA
adapter 410 via a dedicated interconnect or high-speed sys-
tem bus.

While the connection multiplexer provides a scalable, effi-
cient, low-latency means of achieving wide distribution via
Direct Memory Access (DMA) interconnections, there are a
wide variety of applications that do not require the high-
bandwidth, ultra-low-latency of DMA interconnects. Rather,
these classes of applications seek to maximize scalability (i.e.
the number of client connections) while minimizing deploy-
ment cost. These classes of applications typically include
“legacy” applications that are brittle (difficult to change), low
capacity, and latency insensitive (i.e. slow relative to contem-
porary data rates). A prime example of this class of applica-
tion is financial market data “dashboard” applications that
display real-time market data via a Graphical User Interface
(GUI). Typically, once a large number of users learn to use an
interface, the interface is difficult to change. Furthermore, the
rate at which humans can observe changes in a graphic dis-
play is fixed (i.e. humans cannot perceive changes in the
display if the rate of change is greater than 4 changes per
second or so). Such classes of applications may prefer to
receive a metered data transmission that insulates the appli-
cations from increases and fluctuations in real-time data rates.
Furthermore, these classes of applications seek to achieve a
high-level of efficiency and scalability, thus the desire to
leverage common data processing infrastructure with the
ability to distribute processed data to a large set of consumers

10

15

20

25

30

35

40

45

50

55

60

65

10

over commodity message-based interconnection networks
(such as TCP over IP over Ethernet).

FIG. 5 shows an exemplary distribution architecture that
includes multiple Edge Cache appliances 500. The Edge
Cache appliances 500 serves a similar purpose as the Con-
nection Multiplexer 200, but allows real-time data to be dis-
tributed over commodity message-based interconnects. This
includes unicast distribution protocols such as TCP/IP/Eth-
ernet, multicast “messaging” services, etc. Note that the Edge
Cache 500 may distribute data over a Local Area Network
(LAN) 502 to consuming applications. The Edge Cache 500
may also transmit data over a Wide Area Network (WAN) 600
to a downstream Edge Cache that in turn distributes the data
over a LAN to consuming applications, as shown in FIG. 6.
This allows for a number of architectural possibilities, includ-
ing distributing data to a set of applications in a remote
location. Multiple collections of remote applications may be
fed by a single data processing device in a geographically
separate location. This can provide significant efficiencies,
reducing the cost of deploying redundant data processing
devices and potentially reducing the amount of interconnec-
tion bandwidth required to distributed data to the geographi-
cally distributed sets of applications. The Edge Cache 500
allows upstream data processing components, such as market
data normalization engines, to be consolidated (replaced,
enhanced, optimized, etc.) without perturbing the existing
local, and possibly wide-area, distribution network.

FIG. 7 provides a block diagram of an exemplary Edge
Cache device 500. Note that it can be identical to the Con-
nection Multiplexer 200 with the following exceptions. The
output interconnection adapter(s) 700 provide an interface to
one or more message-based interconnection networks. Typi-
cally, this would be an Internet Protocol network built on top
of an Ethernet local-area network. The Multi-class Distribu-
tion Engine 404 may provide all three classes of data distri-
bution or a subset. For example, in one embodiment of an
Edge Cache, the Multi-class Distribution Engine 404 may
only provide metered data distribution.

FIG. 8 provides a block diagram of another exemplary
embodiment of an Edge Cache device 500. Note that it can be
identical to the Edge Cache shown in FIG. 7 with the follow-
ing exceptions. The input interconnection adapter(s) 800 pro-
vide an interface to one or more message-based interconnec-
tion networks. This allows the Edge Cache 500 to be
positioned downstream of another Edge Cache 500, or down-
stream of any message-based data distribution device.

The Edge Cache 500 may be implemented in a variety of
ways. It may be implemented using standard interconnect
adapters, general-purpose processors, and software. Higher
capacity and lower latency may be achieved by employing
chip-multi-processors (CMPs), graphics processors (GPUs),
and/or reconfigurable logic. Thus, in embodiments where one
or more components of the Edge Cache device is imple-
mented in reconfigurable logic such as an FPGA, hardware
logic will be present on the device that permits fine-grained
parallelism with respect to the different operations that such
components perform, thereby providing such a component
with the ability to operate at hardware processing speeds that
are orders of magnitude faster than would be possible through
software execution on a GPP.

In the preferred embodiment, the Multi-class Distribution
Engine 404 is implemented in one or more reconfigurable
logic device(s). Preferably, the reconfigurable logic device(s)
have direct access to high-speed memory for the Shared
Memory Data Record Cache 402 and the Consumer Distri-
bution Records 408. Preferably, direct access to the high-
speed memory for the Shared Memory Data Record Cache is

US 9,047,243 B2

11

also provided to the upstream DMA adapter 400. Preferably,
the upstream DMA adapter 400 communicates directly to the
reconfigurable logic device(s) via a dedicated interconnect or
high-speed system bus. Similarly, the reconfigurable logic
device(s) communicate directly to the downstream message
interconnect adapter 700 via a dedicated interconnect or high-
speed system bus.

As shown in FIG. 9, Connection Multiplexer and Edge
Cache appliances 200 and 500 respectively can be combined
in a number of ways to efficiently scale the distribution of
real-time data to consuming applications 102. This allows a
single (or small number) of data processing devices to service
a large number of potentially diverse applications 102. The
resulting performance improvements, cost savings, reduc-
tions in size and complexity provide significant benefit over
the state of the art.

A. Multi-Class Data Distribution

Exemplary embodiments of invention may provide for any
of the following three types of real-time data distribution, or
any combination thereof:

1. Critical: deliver every update

2. Adaptive: deliver every update, conflate updates when
congestion is detected

3. Metered: deliver updates at a configured rate (constant,
maximum, etc.)

These types of data distribution can be realized via a Multi-
class Distribution Engine (MDE) 404, an example of which is
shown in FIG. 10. In the example of FIG. 10, the MDE 404
employs also three types of data distribution via a critical
transmission engine 1002, an adaptive transmission engine
1004, and a metered transmission engine 1006, preferably
deployed in parallel downstream from an update classifica-
tion engine 1000 that directs updates to an appropriate on the
parallel transmission engines. However, it should be under-
stood that a given instance of an MDE 404 need not imple-
ment all three types of transmission engines; it may imple-
ment one or more of the types of data distribution. For
example, an MDE 404 in a Connection Multiplexer 200 may
implement the Critical and Adaptive types of data distribu-
tion, while an MDE 404 in an Edge Cache 500 may imple-
ment the Critical and Metered types of data distribution. Note
also that an MDE 404 may also be included directly in a ticker
plant appliance 100.

The type of data distribution used by the MDE 404 may be
specified either statically or dynamically. In one embodiment,
the control plane 406 statically configures the MDE 404 to
use a given data distribution type. The configuration may be
changed based on a control message generated by another
system component, a disparate system, or an operator.

In another embodiment, the control plane 406 specifies a
mapping from traffic class to data distribution type. The traffic
may be classified according to one or more values in one or
more fields in the updates. For example, the destination(s)
(e.g. destination address or identifier) may be used to dictate
the type of distribution. Multiple fields may also be used, such
as the update type and the destination(s). Multiple field values
may be specified by using field value ranges, field value
prefixes, and regular expressions, as well as other known
methods of specifying sets of field values. In one embodi-
ment, the traffic classification mappings are loaded into the
MDE prior at system start time. In another embodiment, the
traffic classification mappings are modified dynamically
based on control inputs from other system components,
another system, or an operator.

In another embodiment, the mapping from traffic class to
data distribution type is dynamically adjusted. This adjust-
ment may be triggered by one or more input signals, including

10

15

20

25

30

35

40

45

50

55

60

65

12

current distribution load, the number of downstream connec-
tions, congestion in downstream connections, system errors,
etc.

The Consumer Distribution Records (CDR) 408 shown in
FIGS. 4,7, and 8 can act as a per-consumer state storage block
for the MDE. The CDR contains one or more of the following
sets of state data for each connection: destination identifiers
(e.g. IP address, InfiniBand GUID, etc.), DMA address map-
pings (physical address pointers, subscription offsets, etc.),
traffic class to data distribution mapping table (allowing for
per-consumer data distribution type selection), and data dis-
tribution statistics (updates transmitted, congestion statistics,
unique subscriptions, etc.).

The Scheduler 1008 shown in FIG. 10 schedules the output
of the transmission engines on one or more output intercon-
nection interfaces. In the preferred embodiment, the sched-
uler 1008 utilizes a weighted fair queuing algorithm, such as
weighted deficit round-robin (WDRR), to provide weighted
fair service the outputs of the transmission engines. This
approach allows each transmission engine to consume a
specified fraction of the output interconnection bandwidth.
For example, output from the critical transmission engine
1002 may be given a greater weight than the output from the
adaptive transmission engine 1004. Likewise, output from the
adaptive transmission engine 1004 may be given greater
weight that the metered transmission engine 1006. However,
the scheduler 1008 ensures that each engine still gets its
allocated bandwidth, even when an engine with a higher
weight has data to send.

1. Techniques for Critical Data Distribution Using DMA

The transfer of critical data streams from producer to con-
sumer presents a unique challenge for processing systems.
Both the producer and the consumer require assurances that
data transmission is occurring in sequence and without data
loss. For time-critical environments, such as financial market
processing systems, there is also a requirement to eliminate
processing overhead to ensure minimal latency between the
producer and the consumer. When a disruption in the flow of
data occurs, one of the endpoints is typically informed so that
corrective action can be taken. These actions can range from
a retransmission of missing data to the complete shutdown of
the transmission channel.

The presence of a feedback loop within the communication
protocol enables the producer to detect when the consumer or
communication channel is falling behind and unable to pro-
cess the total volume of data that the producer is trying to
send. Once a backpressure condition is detected, the producer
can buffer data and delay transmission to the client. Due to
finite resources on the producer, this response to backpressure
is only effective for short durations. In addition to inducing
latency in the delivery of data to the client, this behavior can
also negatively impact the performance of the producer. This
performance impact results from the overhead associated
with processing feedback information. Once feedback infor-
mation is received, additional processing is required to buffer
and retransmit data. A poor behaving consumer can also have
anadverse effect on a properly behaving consumer when both
consumers are fed by the same producer. For producers that
support large numbers of consumers, the problem of one
consumer impacting data flows to another consumer con-
nected to the same producer are compounded.

The adverse effects that result from poor behaving clients
can be greatly reduced if the producer is not required to
process feedback information from the consumer. This is
typically accomplished with multicast transmission systems
where one data stream from the producer is received and
processed by multiple consumers. This configuration reduces

US 9,047,243 B2

13

the burden on the producer by shifting the workload to the
consumer. With a multicast communication channel, the con-
sumer is effectively listening to union of all traffic to all
consumers and dropping events that are not pertinent. Aside
from the additional compute resources required to filter the
inbound traffic, the consumer also has to manage message
ordering and react to data loss.

The remainder of this section presents an inventive tech-
nique that can be implemented by a critical transmission
engine 1002, where this technique enables a producer to
efficiently send unique data streams to multiple clients using
remote direct memory access (RDMA). This technique
allows a single producer to generate unique data streams to
multiple consumers without the having to process feedback
information from each client and without requiring each cli-
ent to filter out unwanted data. This technique is ideally suited
for the delivery of critical streams of market data to multiple
consumers where each consumer requires a different event
stream.

This technique for the efficient delivery of critical event
streams to multiple clients is also well suited for implemen-
tation in hardware accelerated environments, including
reconfigurable logic (e.g., FPGA devices), multi-core proces-
sors, intelligent communications nodes and other embedded
or enhanced processing environments. Performance gains
can be achieved by offloading the main processor on the
producer system from the task of generating critical event
streams. Additionally, moving the producer logic off of the
core processor and into an intelligent NIC or hardware accel-
erated environment where the DMA engine lives eliminates
the core processing cycles required to setup and initiate a
DMA transaction. This frees up the core processor to perform
other time critical tasks.

Thus, in embodiments where one or more components of
the critical distribution engine 1002 is implemented in recon-
figurable logic such as an FPGA, hardware logic will be
present on the device that permits fine-grained parallelism
with respect to the different operations that such components
perform, thereby providing such a component with the ability
to operate at hardware processing speeds that are orders of
magnitude faster than would be possible through software
execution on a GPP.

Each consumer 1100 reserves a block of memory to be
used as the inbound data channel. This memory is employed
as a ring buffer 1102 where the producer 1104 writes events to
the ring buffer and the consumer reads from the ring buffer. In
all cases, there is a single producer writing to the ring and a
single consumer reading from the ring. Systems that require
multiple data channels between the producer 1104 and the
consumer 1100 can be implemented using multiple ring buft-
ers 1102.

The producer maintains a write pointer 1106 that is
advanced after an event 1108 is written to the ring 1102. The
consumer maintains a read pointer 1110 that is advanced after
an event is read from the ring. Unlike typical ring buffer
implementations, the producer does not have visibility to the
consumer’s read pointer 1110 and the consumer does not
have visibility to the producer’s write pointer 1106. This
enables the producer and the consumer to operate indepen-
dently of each other. FIG. 11 shows the relative data structures
and their location for both the producer 1104 and the con-
sumer 1100.

FIG. 12 shows an example of a format of an event 1108 as
written to the consumer’s ring buffer by the producer. Events
1108 that are written to the ring buffer 1102 are preceded by
aheader 1200 and followed by a checksum 1202. The header
1200 contains a unique token 1204, a sequence number 1206

10

15

20

25

30

35

40

45

50

55

60

65

14

and an event length 1208. The checksum 1202 is computed
across all the data in the event 1108 including the header value
1200. Events that are written to the ring always contain the
following elements: a header with correct sequence and
length, the event itself 1210, the computed checksum value,
and a blank header 1212. A blank header 1212 is defined as
header word containing only the unique token 1204 with
zeroed out sequence number and length fields.

Upon creation of the ring buffer 1102, the consumer 1100
initializes its read pointer 1110 to point to the first memory
location. The first memory location is also initialized to a
blank header value 1212. This is the only time that the con-
sumer writes to the ring. An out-of-band communication
channel between the consumer and the producer is typically
required in order to complete the registration and setup of the
RDMA channel 1112. Once the RDMA channel 1112 is
established, the consumer 1100 initiates processing by read-
ing the value from its read pointer.

If the value at read pointer equals the blank header value
1212, then no data is available. Polling clients continue to
read from the read pointer waiting for the value to change.
Non-polling clients block on a wake-up event or signal indi-
cating that data has arrived. If the value of the header at the
read pointer contains an invalid unique token 1204, an invalid
message length 1208, or an unexpected sequence number
1206, the consumer is in a data overrun condition and takes
corrective action to resynchronize with the producer. If the
header contains the expected value, the entire event is copied
to a secondary buffer 1114. The secondary buffer 1114 pre-
vents the producer from overwriting the event after it has been
verified but before processing has been completed by the
consumer. Once the event has been copied to the secondary
buffer, the event checksum can be calculated and verified
against checksum 1212. An incorrect checksum indicates that
the consumer was reading the event at the same time the
producer was writing the event. In this situation, the con-
sumer restarts its event processing by retrieving and validat-
ing the write pointer value. A correctly verified checksum
indicates that the consumer successfully received the next
event. At this time, consumer specific processing of the new
event can occur. After processing the event, the consumer
advances its read pointer 1110 by the length of the event,
including header and checksum fields. If the read pointer
1110 is advanced past the length of the ring bufter 1102 minus
the maximum size of an event minus the size of a header word,
then a wrap condition exists and the read pointer is reset to the
beginning of the ring. This ensures that events always occur in
contiguous memory and that a single RDMA transaction is
sufficient to update an event. This reduces processing cycles
for both the producer and the consumer during a wrap con-
dition.

The resynchronization operation that occurs when an over-
run condition is detected by the consumer contains two
phases. The first phase resynchronizes the producer’s tail
pointer 1106 and the consumer’s read pointer 1110 in the
ring. An out-of-band communication, similar to that used
during initial setup, allows the consumer to inform the pro-
ducer of the overrun condition. Upon receiving this resyn-
chronization message, the producer resets its sequence num-
ber to 1 and resets its write pointer to the base address of the
ring buffer. The second phase resynchronizes processing state
within the application. This phase is data-dependent and not
within the scope of this disclosure, but may require the
retransmission of missed events or the update of data ele-
ments that may be in an unknown state following the overrun
condition.

US 9,047,243 B2

15

The efficiency of the transport can be further improved by
coalescing multiple events into a single RDMA transfer.

2. Techniques for Adaptive Data Distribution Using DMA

Variability in real-time data rates, finite bandwidth inter-
faces and interconnects, and finite processing capacity make
guaranteed delivery of every update challenging. Typically,
when a physical limit is reached in real-time data distribution,
data is lost (e.g. the consuming application is disconnected
from the producer if it cannot keep up) or data is delayed (e.g.
the data is buffered at some point in the distribution system
until congestion clears). In practice many applications prefer
to receive every update when possible, but prefer to have
real-time data summarized when delivery of every update is
not possible, rather than experiencing data loss, disconnec-
tion, or delayed data. Adaptive data distribution meets the
needs of this broad class of applications, including financial
trading applications such as smart order routing (SOR) and
high-frequency trading (HFT).

Here we introduce a technique for adaptive real-time data
distribution by an adaptive distribution engine 1004 that uti-
lizes DMA “push” (the data producer initiates memory write
transactions directly to a shared memory region in data con-
sumers), where this technique is amenable to implementation
in reconfigurable logic, chip multi-processors, or other and
other “acceleration” engines capable of offloading general
purpose processors in a computing system. Thus, in embodi-
ments where one or more components of the adaptive distri-
bution engine 1004 is implemented in reconfigurable logic
such as an FPGA, hardware logic will be present on the device
that permits fine-grained parallelism with respect to the dif-
ferent operations that such components perform, thereby pro-
viding such a component with the ability to operate at hard-
ware processing speeds that are orders of magnitude faster
than would be possible through software execution on a GPP.

By utilizing a DMA push model, data delivery latency is
minimized during non-congested periods. (As described in
the Introduction, in a DMA read model the time for the read
request to propagate from the data consumer to the data
producer is added to the time required to deliver the data from
the producer to the consumer.) Note that the adaptive distri-
bution technique may be used over unicast or multicast
DMA -capable interconnects. The basic idea is that the data
producer attempts to write (push) an updated data record to a
shared memory region in each consumer subscribed to the
data item each time the data record is updated. Note that the
shared memory region in a consumer is updated without
participation from processing resources in the consumer sys-
tem. Therefore, the rate at which updated records can be
consumed is independent of consumer system processing
resources. If the consumer is unable to immediately read the
updated record, then the data record may be updated one or
more times by the data producer. (Note that consumer system
memory bandwidth does influence the rate at which shared
memory in the consumer can be updated; however, this is
typically not the primary bottleneck in data consuming sys-
tems.) When the consuming application reads the data record,
it represents the most up-to-date version of the record. We
describe techniques to ensure that data records presented to
the application are coherent, as well as ways to off-load the
coherency checks from the client system processing
resources.

Note that the data producer may also be prevented from
performing a DMA write transaction for every real-time
update to every subscribed consumer. Finite output interface
and interconnect bandwidth at the producer (e.g. Ticker Plant
100 or Connection Multiplexer 200), congestion in intercon-
nect switches, or finite interface and memory bandwidth in

10

15

20

25

30

35

40

45

50

55

60

65

16

consumers may prevent a given DMA write transaction from
being successfully completed. As described below, the MDE
404 maintains a cache of the current data records as well as a
record of pending updates for subscribed consumers. When
congestion clears, the MDE works through the set of pending
updates for each data item and subscribed consumer, distrib-
uting the current data record (which may represent the result
of several real-time updates) for each data item.

In addition to the aforementioned benefits at the consumer,
this technique for adaptive real-time data distribution also
allows a system of producers, interconnects, and consumers
to gracefully deal with instantaneous bursts in real-time data
traffic. Data is only summarized (i.e. conflated) when con-
gestion prevents a real-time update from producer to con-
sumer and the amount of summarization (i.e. conflation) is
dictated by the duration of the congestion. This obviates the
need for disconnected consumers from the producer or queu-
ing incremental real-time updates. As described in the Intro-
duction, more processing resources and time would be
required by the consuming application to read through a
pending queue of incremental updates for the record. Instead,
the consuming application now performs a single read opera-
tion and is presented with the most current version of the data
record. This ability to maintain an up-to-date view of sub-
scribed data records in local shared memory on the consumer
system without consuming system processing resources pro-
vides a significant advantage to a broad range of applications.

Specifically, financial smart order routing (SOR) applica-
tions typically are event-driven by new orders that must be
routed to an appropriate market for execution. When a new
order for a specific financial instrument arrives, the SOR
application typically retrieves the current pricing for the
instrument at the market centers to which it may route orders.
Based on this pricing information, it chooses the destination
market for the order (see the above-referenced and incorpo-
rated patent application Ser. No. 13/316,332). Current pricing
data is provided by market data feeds from each market
center. As described in the above-referenced and incorporated
patents and patent applications, market data can be normal-
ized, enriched, and distributed to subscribing applications by
aticker plant engine. By eliminating the processing overhead
of maintaining current views of the market for financial
instruments, this technique of adaptive real-time data distri-
bution makes more computing resources available to appli-
cations such as SOR.

We first describe adaptive distribution over a unicast DMA
interconnect; a description of adaptive distribution over a
multicast DMA interconnect follows. As part of the process
of establishing a subscription to data items, consumer appli-
cations 102 allocate a contiguous block of memory to serve as
the shared memory region 1300 into which the producer
writes data records for subscribed data items. Note that if
multiple applications share the same host system, a common
shared memory region may be shared among multiple appli-
cations. The base (starting) address and the size of the
memory block is transmitted to the producer. The Control
Plane 406 in the producer is responsible for servicing con-
nection and subscription requests from consumers, as
described in the above-referenced and incorporated patents
and patent applications. For each connected consumer, the
Control Plane 406 establishes a record 1302 in the Consumer
Distribution Records (CDR) block 408 as shown in FIGS. 4,
7, and 8. At minimum, each consumer record 1302 includes a
consumer identifier (that uniquely identifies the consumer
among the set of connected consumers to the producer), the
interface address for the consuming application, the base
address and size of the shared memory region in the con-

US 9,047,243 B2

17

sumer. In one embodiment, all consuming applications 102
allocate a shared memory region large enough to store all of
the records for the known universe of data items. Typically,
the shared memory regions would be of a common size
among the consumers. This allows each data item to be
assigned a single offset within the shared memory of all
clients. This minimizes the amount of state storage space
required by the CDR, but increases the memory utilization in
the systems hosting consumer applications.

Consider the example provided in FIG. 13. An updated
record for INTC 1304 is written to the shared memory data
record cache in the MDE by an upstream component, and a
notification 1306 of the update for INTC along with a sub-
scription list (specified by consumer ID) is passed to the
adaptive transmission engine. (In this example, we presume
that the data has already been classified for adaptive trans-
mission 1004.) The adaptive transmission engine adds the
record ID for INTC to a queue of pending transfers for each of
the listed subscribers. This queue can be resident within the
adaptive transmission engine 1004 shown in FIG. 13. Note
that the data structure used to maintain the queue of pending
transfers does not allow redundant entries to be added to the
queue. Thus, if an entry for INTC already exists in a pending
transfer queue for a given consumer, then no changes are
made to the queue. In the preferred embodiment, the adaptive
transmission engine 1004 operates in parallel to service the
pending transfer queues for all known consumers 1100. Pref-
erably, the engine 1004 utilizes a fair queuing discipline to
provide fair service to all consumers 1100. When the engine
1004 services the pending transfer queue for a given con-
sumer, the engine looks up the consumer information in the
consumer address table 1308. Using the record ID for pend-
ing data item, the engine looks up the offset 1310 for the
record in the record offset table 1312. For each consumer, the
engine 1004 initiates a DMA write transaction. The consumer
is identified on the downstream interconnect using the
address listed in the consumer address table 1308. The write
address for the record update is the sum of the base address
listed for the consumer in the consumer address table and the
offset for the record. If a write transaction is successful, the
engine 1004 moves on to the next consumer.

If the write transaction is not successful, the engine 1004
simply moves on to the pending transfer queue to service as
dictated by the scheduling discipline. Note that the record ID
for the failed record transfer remains on the pending transfer
queue until a current update for the record is successfully
written to the consumer’s shared memory 1300. Also note
that when the engine 1004 pulls a new record ID from a
pending transfer queue, it reads a current copy of the record
from the shared memory data record cache 402. This ensures
that the most current version of the record is transferred to
consumers.

A number of optimizations may be employed to minimize
processing latency by the adaptive transmission engine 1004
and to reduce the number of record reads from the shared
memory data record cache 402 by the engine 1004. One
optimization is to attempt to send to all consumers of a given
data item when a new record is read from the shared memory
data record cache 402. This requires that the pending transfer
data structures allow the engine to quickly identify whether or
not an update for the given data item is pending for a given
consumer. A hash table or Bloom filter can be used for effi-
cient set membership queries. This optimization has the abil-
ity to send record updates for different data items out of
relative order, e.g. an update for INTC may be transmitted
prior to an update for CSCO, even though the record for

15

20

25

40

45

50

55

18

CSCO was updated first. This is acceptable for applications
that need not maintain relative synchronization among data
items.

Ifthe universe of data items becomes large and the amount
of contiguous memory required on the consumer systems
becomes prohibitive, the adaptive transmission engine 1004
can be extended to store a record offset table 1312 for each
consumer. As shown in FIG. 14, the amount of state stored in
the CDR 408 is increased so that each subscribed consumer
(identified by their assigned ID) has an associated offset table
1312, . .., 1312,. This allows the consumer application to
only allocate sufficient contiguous shared memory for the
subscribed set of data items. Note that for each write trans-
action, the engine 1004 must compute the destination address
for the write by adding the base address to the offset address
for the given consumer i for the given data item (as read from
offset record 1312,). This does increase the amount of state
storage in the CDR 408, but the increase is likely far less than
the amount of wasted shared memory in the common offset
technique previously described.

Note that the adaptive transmission technique can also be
applied across DMA-capable interconnects that provide mul-
ticast capability. In one embodiment, all consumers 1100
allocate a shared memory region 1300 starting at the same
base address for the known universe of data items. The pro-
ducer simply maintains a single mapping of offsets for data
items and single base address register for all consumers.

Mechanisms at the consumer must work in concert with the
producer to present data transferred via adaptive transmission
to consumer applications 102. In the preferred embodiment,
these mechanisms are encapsulated in an Application Pro-
gramming Interface (API). FIG. 15 provides an example of a
consumer API 1500 that allows data to be received without
consuming processing resources in the consumer system. As
previously described, the producer performs DMA write
transactions directly to the shared memory region 1300 in the
consumer. When the consumer application 102 wishes to
retrieve the current data record for a given data item, it
requests the data record using a key. Typically, this would be
the same key used to specify the data item at subscription
time. The consumer API 1500 maintains an offset table 1502
that maps a given data record key to a relative offset (from the
base address of the shared memory region (see pointer 1504)
for the data record. Note that additional data record attributes
such as record size may also be stored in the offset table. In the
simple example of FIG. 15, the records are of a known con-
stant size. The API 1500 performs a lookup in the offset table
for the given key. Using the offset and the base address for the
shared memory region, the API performs a read operation
from the shared memory region 1300.

Note that the shared memory region 1300 is not “locked”
and the producer is not explicitly prevented from writing to
the same memory location that the API 1500 is reading from.
For records that occupy more than one physical memory
“slot”, there is also a possibility that the producer could be
writing one portion of the record while the consumer is read-
ing a different portion. As mentioned in the Introduction,
computing systems that utilize NUMA may issue memory
access operations out of order. In order to ensure that a coher-
ent version of the record has been retrieved, prior to returning
the record to the requesting application, the API 1500 must
perform a coherency check 1708. There are various ways to
ensure record coherency, including checksums, Cyclic
Redundancy Check (CRC), and hash digests (e.g. MD5). In
the preferred embodiment a checksum is used due to its
simplicity and computational efficiency. Prior to transmitting
the updated record, the producer computes a checksum over

US 9,047,243 B2

19

the record and appends the checksum to the record. The
consumer API 1500 reads the record and appended check-
sum, computes a checksum over the record, and compares its
computed checksum with the checksum computed by the
producer as described above. If the checksums match, then
the consumer API 1500 delivers the record to the requesting
application 102. If the checksum fails, then the consumer API
1500 or the consumer application 102 may retry the read
operation. The record request function call may be imple-
mented as either a blocking or non-blocking call, as is well-
known in the art.

Note that the coherency check consumes processing
resources, however these resources are only consumed at
record retrieval time. Thus, no consumer processing
resources are required to update the data record in client
shared memory 1300. In one embodiment, general purpose
processors on the consumer computing system may be
employed in order to perform the coherency checks. In a
subsequent section, we describe mechanisms to offload and
accelerate these coherency checks from general purpose pro-
cessors in consumer computing systems.

For applications, such as order books and price books in
financial market data, efficiencies may be gained by having
the producer only update a subset of a given data record. As
shown in the example of FIG. 16, a record 1600 may be
subdivided into multiple parts, each covered by its own
checksum (e.g. checksums 1608, 1610, and 1612). As
described in the above-referenced and incorporated WO Pub.
WO 2010/077829, a price book for a financial instrument is a
pair of sorted arrays of bids and offers to buy and sell, respec-
tively. Each array entry typically includes the price, quantity
or aggregated quantity at the price, order count at the price,
market, market participant identifier, and other attributes such
as implied liquidity. In the example, a price book record 1600
for a financial instrument is divided into the three parts: bid
array portion 1602, common information portion 1604, and
offer array portion 1606. The common information includes
data fields that apply to the instrument as whole such as
trading status (e.g. open, closed, halted) and the sequence
number of the most recent update event. When a new order to
buy the instrument arrives, the bid array and common infor-
mation may be updated. The producer computes new check-
sum values for the bid array and common information por-
tions of the record prior to transmitting those record portions
to consumer(s). Note that the common information section
1604 is interposed between the bid array 1602 and ask array
1606 in the record layout. This allows the producer to perform
a single write operation to consumers when an update
changes the common information portion of the record in
addition to the bid array portion or ask array portion.

Note that the consumer mechanisms shown in FIG. 15 are
appropriate for applications that prefer to retrieve data
records at a time of their choosing (e.g. periodically, event-
driven from a different data source, continuously polling,
etc.). Other applications may wish to be notified when records
for subscribed data items have been updated by the producer.
FIG. 17 provides an example of a consumer API 1700 that
includes mechanisms to provide this notification to the con-
sumer application. When the producer updates a record in the
shared memory region 1300 of the consumer, it also deposits
anidentifier for the updated record in a queue in the consumer.
Inthe example, the queue is contained within the Notification
Logic block 1702 in the consumer. Note that some intercon-
nects allow this operation to happen as part of the write
transaction to the shared memory region 1300. For example,
InfiniBand allows an “immediate” field to be included with
the completion event that is delivered to the consumer when a

10

15

20

25

30

35

40

45

50

55

60

65

20

DMA write transaction occurs. The notification logic 1702
reads the queue of identifiers and uses these identifiers to
notify the consumer application 102 of a record update. As
part of the notification, the logic 1702 may update additional
meta-data such as an updated flag in the table 1502 that maps
akey to a shared memory index that reflects whether or not the
record has been updated since it was last read by the consumer
application. This provides for optimizations such as immedi-
ately returning a “not updated” response to a read request
from the consumer application 102.

Consumer applications 102 may also desire to know which
fields in the data record have changed relative to the last
retrieval of the record. In order to provide this capability, the
adaptive consumer API 1700 maintains a cache 1704 of the
most recent data records retrieved by the consumer applica-
tion. When the consumer application retrieves a new data
record, delta comparison logic 1706 computes the difference
between the new record (that has passed coherency checking
1708) and the most recent record delivered to the client appli-
cation. Identifying which record fields changed may be
accomplished in a variety of ways. The delta comparison
logic 1706 may append a list of field identifiers for the fields
that have changed, each field may be assigned a “changed”
Boolean flag that is set to true or false, etc. Once the new
record is delivered to the consumer application 102, the last
read cache 1704 is updated.

Consumer applications may want to exert finer-grained
control over when they are notified of updates to subscribed
records. As shown in the exemplary API 1800 of FIG. 18, an
update notification filter logic block 1802 may be interposed.
Consumer applications may specify a variety of notification
rules for each subscribed data items. Exemplary notification
rules include:

Price change threshold, e.g. financial instrument price

must have changed by a specified delta

Update conditions, e.g. financial instrument quote condi-

tions (don’t notify on “slow” or “manual” quote condi-
tions) or trade conditions (don’t notify on “off-ex-
change” trade conditions)

Size change threshold

Latency change threshold, e.g. do/don’t notify application

if processing or transmission latency exceeds a thresh-
old

Only notify when derivative financial instruments are “in

the money”, e.g. currently exercising the equity option
results a profit for the option holder

Preferably, consumer applications may dynamically apply/
change filter rules via the APIL. Note that if the application
chooses to retrieve a data record between notifications, it
would receive the most current data record that was success-
fully written to the shared memory region, even if a notifica-
tion was not generated.

Regarding data delivery latency measurement, note that the
producer can include one or more timestamps in the data
written to the consumer shared memory region. For example,
the producer may include timestamps for the following: when
it initiated data processing/generation, when it completed
data processing/generation, when it invoked the DMA write
operation to the consumer. This provides for measurement of
producer processing and data delivery latency, independent
of the processing capacity and speed of the consumer(s).

Note that the notification, notification filtering, and delta
comparison mechanisms, as shown in FIGS. 17 and 18, use
processing resources at the consumer in order to process the
events from the producer, update consumer tables or data
structures, optionally notify the consumer application, and
compute relative differences in the new data record. In one

US 9,047,243 B2

21

embodiment, these processing resources may be general pur-
pose processors on a standard consumer computing system.
In a subsequent section, we describe mechanisms for offload-
ing and accelerating notification logic and notification filter-
ing from the general purpose processors in consumer com-
puting systems.

Note that multicast capabilities may be reliable or unreli-
able. If the interconnect provides a reliable multicast service,
then the producer needs to select a strategy for dealing with
failed data deliveries to a subset of the consumers.

3. Techniques for Metered Data Distribution

In a metered data distribution technique, a predefined
maximum event rate limits the rate at which update messages
are sent to the consumer. If the producer detects a larger
potential outbound message rate, it will summarize or drop
events before sending to the consumer. This ensures that the
maximum event rate is never exceeded. The metered tech-
nique can be further subdivided into four categories: a per-
producer rate, a per-consumer rate, a per-data item rate, and a
per-consumer/per-data item rate. In a per-producer rate tech-
nique, a single rate is use to limit the maximum traffic rate of
all data items delivered to all consumers. In a per-consumer
rate technique, each consumer can specify its own maximum
data rate. A single producer servicing multiple consumers
will support a different maximum rate for each consumer. In
a per-data item rate technique, a maximum data rate for indi-
vidual data items can be set, but all consumers receiving a
specific data item will all receive data at the specified rate. In
a financial data delivery system, updates for the stock symbol
IBM could be metered at a different rate than those for the
stock symbol APPL. In a per-consumer/per-data item rate
technique, the maximum rate is specified by the consumer at
subscription time for each data item. This provides the most
flexibility for consumers, but adds complexity to the pro-
ducer.

In this disclosure, we present an inventive technique for
metered per-consumer/per-data item data distribution that
can be implemented by a metered distribution engine 1006.
Additionally, we extend the per-consumer/per-data item rate
technique to include a data class metered technique. This
allows different classes of data to be metered at different
rates. For instance, level 1 quote updates could be metered at
4 updates per second, level 2 price book updates could be
metered at a 20 updates per second, and trade reports could be
not metered at all. This type of metered technique provides
the ultimate in flexibility for clients that have varying meter-
ing requirements across a large consumer base. These varying
metering requirements can be imposed by the consumer
applications, end system processing capacities, network
bandwidth, or other types of constraints.

Additionally, our metering framework has been designed
to function in a distributed environment, where meter rates
can be further restricted throughout a chain of multiple dis-
tribution nodes, as shown in FIG. 9. Furthermore, an exem-
plary metered distribution engine 1006 in accordance with
this technique is amenable to implementation in reconfig-
urable logic, chip multi-processors, or other and other “accel-
eration” engines capable of offloading general purpose pro-
cessors in a computing system. Thus, in embodiments where
one or more components of the metered distribution engine is
implemented in reconfigurable logic such as an FPGA, hard-
ware logic will be present on the device that permits fine-
grained parallelism with respect to the different operations
that such components perform, thereby providing such a
component with the ability to operate at hardware processing
speeds that are orders of magnitude faster than would be
possible through software execution on a GPP.

10

15

20

25

30

35

40

45

50

55

60

65

22

A typical transmission engine for a unicast communication
network contains a fanout engine that is responsible for rep-
licating inbound events to each of the connected clients. Add-
ing metering logic to the fanout engine typically results in
degraded performance for non-metered clients due to the
extra processing requirements associated with conflating data
for selected clients. In order to address the performance
implications of conflating data within the fanout engine, we
present an inventive technique for delivering metered data to
multiple clients, where each client has the ability to select a
unique metering rate for different content. FIG. 19 shows
diagram of an exemplary metered transmission engine 1006
that includes separate metering and fanout engines 1900 and
1902. By separating the metering engine 1900 from the
fanout engine 1902, separate compute resources can be
applied to the task of enforcing metered rates for the con-
nected clients without impacting non-metered data. Data
received by the transmission engine 1006 is either passed to
the metering engine 1900 or the fanout engine 1902, based on
the outcome of the event classification by the event classifier
1904. Data items that are eligible for metering are routed to
the metering engine 1900 whereas data items that cannot be
metered are sent directly to the fanout engine 1902. This
ensures that non-metered data items are not delayed by meter-
ing specific processing.

The metering engine 1900 typically supports rates from 1
update per second to 1000 updates per second or no metering
where every event is delivered to the client. The metered
transmission engine 1006 is configured at startup with a
maximum update rate which limits the rate at which indi-
vidual update events will be sent to clients. A value of zero for
the maximum update rate indicates that clients can request
unmetered updates for the metered eligible data items.

A typical configuration for financial market data is to
enable metering for level 1 (top-of-book) quote traffic, but
support every tick delivery for other events such as trade
reports and trading actions. Due to the high volume of quote
traffic relative to the trade reports, this enables clients to
match the network bandwidth and data processing capabili-
ties of their environment to the demands of their applications
relative to the market data event rates.

A diagram of an exemplary metering engine 1900 is shown
in FIG. 20. The metering engine maintains the following
records 2002 in table 2004 in order to implement the per-
consumer/per-data metered transmission technique.

Each metered data item per subscription can have a record

containing the following information:

A per client data map that maintains a list of clients that
have subscriptions to the item.

An item index number that uniquely identifies the data
item.

A global dirty bit that is set when an update for this data
item is waiting in the pending send queue.

A global last time sent that is used in order to meter the
data item on a system-wide basis.

A current cached image of the data item record.

The size of the cached image.

A record of per-client data containing the following infor-
mation will be linked into the data item record’s per-
client data vector:

A dirty bit indicating that a data update is already pend-
ing for this client.

A link to the data item node for this client.

The client specific meter rate is used in conjunction with
last time sent in order to properly meter on the per
client basis.

US 9,047,243 B2

23

The last time sent is used in conjunction with the client
meter rate in order to properly meter on the per client
basis.

Pointer to the client specific data.

The following logic applies when creating or updating the
records associated with metering processing. When a client’s
subscription request is received by the subscription manager
1910, a call is made into the metering engine to add the
pending subscribed client to a temporary mapping. If a bad
subscription response is returned, the pending subscription is
removed from the system, otherwise, an initial data item
record image (refresh) is requested for the data item. The
client specifies the desired metering rate in the subscription
request. The event rate received by the client is limited by the
maximum update rate configured on the transmission engine.
The metering engine 1900 allows the subscription manager
pass a client id, turnkey, and meter rate upon client subscrip-
tion. The metering engine 1900 will set up the appropriate
records to complete the subscription when a refresh is
received that matches that turnkey. During an unsubscription,
the subscription manager synchronizes with the metering
engine in order to update records in the metering engine to
stop the flow of data to the client.

The following outlines the use of a constant insertion time
timing wheel 2004 for managing rate limited events.

With a constant insertion time O(c), a timing wheel 2004
provides a more efficient mechanism for maintaining an
ordered sequence of queued tasks with different start
times. By contrast, an insertion sort algorithm has a
worst case performance of O(n?).

If we limit the meter interval to 1 ms and the maximum time
between metered updates to be 1 s, the timing wheel can
be limited to 1000 entries.

Each entry in the timing wheel points to a linked list of
waiting metered events to be sent at that positional mil-
lisecond offset.

Each update event that requires metering will be inserted
into the appropriate millisecond granularity ‘bucket’ in
the timing wheel 2004.

The insertion point will depend the current position if
the timing wheel, the metering interval for that client,
and how long it has been since the last send.

The timing wheel advances to the next bucket every
millisecond. Newly inserted updates must be placed
far enough from the current timing wheel pointer to
allow the correct number of milliseconds to pass prior
to processing the inserted event.

When servicing pending updates, the metering engine only
has to check the current time against the last time the
timer wheel advanced. If it is time for the wheel to
advance, advance the wheel, process the linked list of
clients, send a metered update to each client, and update
the last time sent for each entry.

The core logic of the metered transmission engine 1006

performs the following tasks:

The event classifier 1904 passes non-metered event types
to the Fanout Engine 1902 via the Real-time Queue
1906.

The event classifier 1904 passes metered events types to the
Metering Engine 1900, which does the following:
Lookup the data item record 2002 in the data item record

table 2004, preferably using a hash of the data item
index.

Update the data item record 2002 with information from
the event. Depending on the event type and data, this
may include summary computations.

Check the Global Dirty Bit (step 2006).

20

25

30

40

45

55

60

24

If set, continue on to the next event. This effectively
conflates the update and causes the latest (summa-
rized) data item content to be transmitted at the next
meter interval.

Otherwise, add the data item to the Pending Send
Queue. Set the Global Dirty Flag in the data item
record.

The Metering Engine performs the following operations to

service the Pending Send Queue:
For every data item in the Pending Send Queue:

Iterate over the Per Client Data Vector, for every Cli-
ent Data Record and do the following for each:
Check Client Record dirty bit (step 2008).

If set, the update is already in the Rate Limited
Ring, ignore this update.

Otherwise, check the metered rate and last time
sent to decide if the update can go out to the
client now.

Ifthe update can go out, generate the event from the
data item record for the client and place into the
Fanout Unit’s Metered Ring Buffer 1908. Clear
the Client’s dirty bit.

Otherwise, place the Client into the Rate Limited
Queue. Set the Client’s dirty bit.

Clear the data item record’s Global Dirty Bit after
processing the entire Per Client Data Vector asso-
ciated with the data item record.

Continue to process the data items in the Pending Send

Queue until the queue is drained.

The Fanout Engine 1902 is responsible for distributing
events to the specified clients. In the preferred embodiment,
the fanout engine 1902 provides fair service to Rate Limited
Queue 1908 and the Real-time Queue 1906.

B. Multi-Class Data Consumption and Presentation

As previously described, the data consumption and presen-
tation functions in the consumer require processing resources
in the consumer system. In one embodiment, these processing
resources are general purpose processors (GPPs). By using
GPPs, the data consumption and presentation functions effec-
tively reduce the amount of GPPs available for consumer
application processing. Here we describe mechanisms to oft-
load data consumption and presentation processing to an API
offload engine 2100. The API offload engine 2100 may be
implemented using a variety of technologies, including
reconfigurable logic, chip multi-processors (CMPs), and
graphics processing units (GPUs). Thus, in embodiments
where one or more components of the API offload engine
2100 is implemented in reconfigurable logic such as an
FPGA, hardware logic will be present on the device that
permits fine-grained parallelism with respect to the different
operations that such components perform, thereby providing
such a component with the ability to operate at hardware
processing speeds that are orders of magnitude faster than
would be possible through software execution on a GPP.

As shown in FIG. 21, the API offload engine 2100 may be
realized as an adapter board that plugs into a consumer system
interconnect “slot”. The API offload engine 2100 may also be
realized on the same motherboard as the other consumer
system processing components, as well as other types of
mezzanine or extension boards.

The example of FIG. 21 demonstrates how an adaptive
transmission consumer can be realized in an API offload
engine 2100. Data from the producer is received by a DMA
interconnect adapter 2102 in the consumer system. In the
preferred embodiment, the API oftload engine 2100 allows
the producer to directly write to a shared memory region 1300
directly connected to the API offload engine 2100. Note that

US 9,047,243 B2

25

this write transaction occurs directly over the consumer sys-
tem interconnect 2104 without involvement of other process-
ing resources in the consumer system. Alternatively, the API
offload engine 2100 may include a DMA interconnect adapter
2200, as shown in FIG. 22, such that the DMA write transac-
tions are handled exclusively within the offload engine 2100
without traversing the consumer system interconnect 2104.

The consumer API processing elements in the offload
engine 2100 function as previously described. In the pre-
ferred embodiment, the offload engine includes sufficient
high-speed memory to host the shared memory region 1300
and the last read cache 1704. This may be practically realized
by Synchronous Random Access Memory (SRAM) or Syn-
chronous Dynamic Random Access Memory (SDRAM)
directly attached to a reconfigurable hardware device or other
processing engine. The offload engine 2100 contains a system
interconnect interface 2106 to communicate with one or more
consumer applications. An offload engine driver 2108 pro-
vides the necessary mechanisms to allow application logic
running in the consumer system to communicate with the API
offload engine. This may include configuring registers,
assigning the API offload engine and address range on the
system interconnect, performing initialization resets, and
managing the transfer of data from application logic to the
API offload engine. As an example see the above-referenced
and incorporated U.S. Pat. App. Pub. 2007/0174841.

A “thin” API 2110 exposes the same application program-
ming interface (API) to consumer applications, however it
does not perform any of the API processing functions. It’s
primary role is to pass requests for data records from the
consumer application to the API offload engine, and to pass
notifications of record updates and current data records from
the API offload engine to the consumer application. The thin
API also performs the necessary control plane functionality
to establish a connection with the upstream data producer,
subscribe to data items, establish notification rules with the
API offload engine, etc.

Note that the API offload engine 2100 may also host the
necessary logic to offload the critical transmission consumer
and metered transmission consumer API logic.

Note that additional functionality may be embedded in the
API offload engine such as data-type conversions (e.g. con-
vert ASCII encoded numbers into binary representations and
vice versa), etc.

While the present invention has been described above in
relation to its preferred embodiments, various modifications
may be made thereto that still fall within the invention’s scope
as will be recognizable upon review of the teachings herein.
As such, the full scope of the present invention is to be defined
solely by the appended claims and their legal equivalents.

What is claimed is:

1. A method for data distribution, the method comprising:

maintaining a plurality of data records corresponding to a

plurality of items, a data consumer being subscribed to
information about the items, the records being indicative
of a plurality of locations reserved for data about the
items in a shared memory, the shared memory being
shared between the data producer and the data con-
sumer;

receiving a plurality of events corresponding to the items;

and

adaptively distributing data representative of the events to

the subscribed data consumer by (1) determining a plu-
rality of locations in the shared memory for writing the
event data based on the data records, and (2) performing
aplurality of direct memory access (DMA) write opera-
tions for the event data to the shared memory at the

10

15

20

25

30

35

40

45

50

55

60

65

26

determined locations to provide updates about the items
without participation from any processing resources in
the data consumer;

wherein the adaptively distributing step is performed by a

processor.

2. The method of claim 1 wherein the processor is resident
in a data producer, the data producer performing the main-
taining, receiving, and adaptively distributing steps, wherein
a plurality of data consumers are subscribed to a plurality of
the items, the records being indicative of a plurality of loca-
tions in a plurality of shared memories reserved for data about
the items, each shared memory being shared between the data
producer and a data consumer, and wherein the adaptively
distributing step comprises the processor performing the
adaptively distributing step with the different data consumers
independently of any read operations from the shared memo-
ries that are performed by the data consumers.

3. The method of claim 2 further comprising:

the data producer storing the received events in a memory

cache;

the data producer determining whether any of the data

consumers are subscribers to the items corresponding to
the received events; and

the data producer performing the adaptively distributing

step with respect to the event data in the cache for the

data consumers that are determined to be subscribed to

the items corresponding to the received events, wherein

the adaptively distributing step comprises:

when there is write congestion for the data producer, the
data producer updating the cache as new event data is
received with the latest event for each item such that
the DMA write operation will write the latest event for
aparticular item rather than a most previous event for
that particular item if the most previous event had not
yet been distributed to its subscribed data consumer;
and

when there is read congestion for a data consumer and
new event data has been received by the data producer
for a particular item for which the congested data
consumer has not yet read the most previous event
data for that particular item written to the shared
memory of the congested data consumer, the data
producer overwriting the location in the shared
memory for that particular item with the new event
data via the DMA write operation.

4. The method of claim 2 wherein the maintaining step
further comprises:

the data producer maintaining a plurality of client distribu-

tion records (CDRs), each CDR comprising a data con-
sumer identifier, an interface address, a base address,
and a shared memory size identifier;

the data producer maintaining a plurality of record offsets,

each corresponding to one of the items;

the method further comprising:

the data producer maintaining a queue of pending trans-
fers to the data consumers;

the data producer updating the queue with events based
on the receiving step; and

the data producer performing the adaptively distributing
step for the events in the queue such that the data
producer DMA writes event data from the cache to the
shared memories in the data consumers at locations in
the shared memories determined from the CDRs and
the record offsets.

5. The method of claim 4 wherein the record offsets are
applicable across all of the data consumers.

US 9,047,243 B2

27

6. The method of claim 4 wherein the step of maintaining
the record offsets comprises the data producer maintaining
different sets of record offsets for a plurality of the data
consumers.

7. The method of claim 4 wherein the data producer con-
tinues to update a data record for an item in response to
received new data for that item even if there is a pending
transfer in the queue for that data record.

8. The method of claim 4 further comprising:

the data producer determining whether the same updated

data record is pending for transfer to a plurality of data
consumers; and

in response to determining that the same updated data

record is pending for transfer to a plurality of data con-
sumers, the data producer grouping the DMA write
operations for the updated data record to those data
consumers.

9. The method of claim 8 further comprising the data pro-
ducer performing the determining step using a hash table.

10. The method of claim 8 further comprising the data
producer performing the determining step using a Bloom
filter.

11. The method of claim 2 wherein the data producer
performs the method steps across unicast DMA-capable
interconnects.

12. The method of claim 2 wherein the data producer
performs the method steps across multicast DMA-capable
interconnects.

13. The method of claim 1 wherein the data comprises
financial market data.

14. The method of claim 1 wherein the processor is resident
within an intelligent network interface card (NIC).

15. The method of claim 1 wherein the processor is co-
resident with a DMA engine.

16. The method of claim 1 wherein the processor is resident
within a connection multiplexer.

17. The method of claim 1 wherein the processor is resident
within an edge cache device.

18. The method of claim 1 wherein the processor is resident
within a ticker plant.

19. The method of claim 1 wherein the processor com-
prises a coprocessor.

20. The method of claim 19 wherein the coprocessor com-
prises a reconfigurable logic device.

21. The method of claim 19 wherein the coprocessor com-
prises a multi-core processor.

22. The method of claim 19 wherein the coprocessor com-
prises a graphics processing unit (GPU).

23. An apparatus for data distribution comprising:

a processor; and

amemory;

wherein the processor is configured to:

maintain a plurality of data records corresponding to a
plurality of items in the memory, a data consumer
being subscribed to information about the items, the
records being indicative of a plurality of locations
reserved for data about the items in a shared memory,
the shared memory being shared between the data
producer and the data consumer;

receive a plurality of events corresponding to the items;
and

adaptively distribute data representative of the events to
the subscribed data consumer, wherein as part of the
adaptive distribution the processor is configured to (1)
determine a plurality of locations in the shared
memory for writing the event data based on the data
records, and (2) perform a plurality of direct memory

10

—

5

20

25

30

35

40

45

50

55

60

28

access (DMA) write operations for the event data to
the shared memory at the determined locations to
provide updates about the items without participation
from any processing resources in the data consumer.

24. A method for data distribution comprising:

generating a plurality of unique data streams for a plurality

of data consumers, each unique data stream correspond-
ing to a data consumer such that the unique data streams
correspond to a plurality of data consumers in the aggre-
gate, wherein each unique data stream comprises a plu-
rality of update events for a plurality of items, the update
events in each unique data stream relating to only a set of
items that are of interest to that unique data stream’s
corresponding data consumer; and

distributing the unique data streams to their associated data

consumers via a plurality of direct memory access
(DMA) write operations to a plurality of shared memo-
ries in the data consumers without processing feedback
information from the data consumers; and

wherein the method steps are performed by a processor.

25. The method of claim 24 wherein the set of items that are
of interest to the data consumers are the items to which each
data consumer has subscribed, the method further comprising
processor performing the generating step and the distributing
step such that the data consumers are not required to filter out
data from the unique data streams that are related to items for
which the data consumers have not subscribed.

26. The method of claim 24 further comprising:

the processor tracking where to write the update events in

the shared memories via a plurality of write pointers,
wherein each data consumer is configured to read data
from the shared memory via a read pointer, and wherein
the processor has no visibility of the data consumers’
read pointers when distributing the unique data streams
the data consumers.

27. The method of claim 26 wherein the shared memory
comprises a ring buffer.

28. The method of any of claim 27 wherein each update
event comprises:

a header field;

an event field,;

a checksum field; and

a blank header field.

29. The method of claim 28 wherein the header field com-
prises a token, a sequence and a length.

30. The method of claim 28 further comprising triggering
a resynchronize operation in response to a read by the data
consumer of a header field that contains an invalid unique
token, an invalid message length, or an unexpected sequence
number.

31. The method of claim 28 further comprising the data
consumer restarting its event processing when an incorrect
checksum is detected.

32. The method of claim 24 wherein the data streams
comprise financial market data.

33. The method of claim 24 wherein the processor is resi-
dent within an intelligent network interface card (NIC).

34. The method of claim 24 wherein the processor is co-
resident with a DMA engine.

35. The method of claim 24 wherein the processor is resi-
dent within a connection multiplexer.

36. The method of claim 24 wherein the processor is resi-
dent within an edge cache device.

37. The method of claim 24 wherein the processor is resi-
dent within a ticker plant.

38. The method of claim 24 wherein the processor com-
prises a coprocessor.

US 9,047,243 B2

29

39. The method of claim 38 wherein the coprocessor com-
prises a reconfigurable logic device.
40. The method of claim 38 wherein the coprocessor com-
prises a multi-core processor.
41. The method of claim 38 wherein the coprocessor com-
prises a graphics processing unit (GPU).
42. An apparatus for data distribution comprising:
aprocessor configured to (1) generate a plurality of unique
data streams for a plurality of data consumers, each
unique data stream corresponding to a data consumer
such that the unique data streams correspond to a plu-
rality of data consumers in the aggregate, wherein each
unique data stream comprises a plurality of update
events for a plurality of items, the update events in each
unique data stream relating to only a set of items that are
of interest to that unique data stream’s corresponding
data consumer, and (2) distribute the unique data streams
to their associated data consumers via a plurality of
direct memory access (DMA) write operations to a plu-
rality of shared memories in the data consumers without
processing feedback information from the data consum-
ers.
43. A method for data distribution, the method comprising:
maintaining a plurality of data records corresponding to a
plurality of items for which event data is to be distributed
to a plurality of data consumers on a metered basis, the
records identifying the subscribed data consumers for
each item and metering data for each subscribed data
consumer for each item such that the records support
differing metering rates for a plurality of same items
with respect to a plurality of different data consumers
and differing metering rates for a plurality of different
items with respect to a plurality of same data consumers;

receiving a plurality of events corresponding to the items;
and

performing a metered distribution of data relating to the

received events to the data consumers based on the data
records such that the data distribution is metered on a
per-data consumer/per item basis in accordance with the
metering data in the data records that are applicable to
the items corresponding to the received events; and
wherein the performing step is performed by a processor.

44. The method of claim 43 wherein the processor is resi-
dent in a data producer, the data producer performing the
maintaining, receiving, and metered distribution steps,
wherein the metering data comprises, for each item with
respect to each subscribed data consumer for that item, (1) a
meter rate applicable to the item-subscribed data consumer
pair, and (2) a last time sent applicable to the item-subscribed
data consumer pair.

45. The method of claim 44 wherein the metered distribu-
tion performing step utilizes a timing wheel with constant
insertion time.

46. The method of claim 45 further comprising the proces-
sor performing a fanout operation, and wherein the processor
performs the metered distribution and fanout operations inde-
pendently.

47. The method of claim 44 further comprising the proces-
sor classifying data into metered and real-time classes on a
per-event basis, the method further comprising the processor
performing the metered distribution for the event data classi-
fied into the metered class.

48. The method of claim 47 further comprising the proces-
sor performing a fanout operation, and wherein the data clas-
sification, metered distribution, and fanout processing is per-
formed in parallel.

10

15

20

25

30

35

40

45

50

55

60

65

30

49. The method of claim 43 wherein each data record

comprises:

a client data map that maintains a list of data consumers
with subscriptions to the data item;

a data item index number;

a global dirty bit;

a global last time sent;

a current image of the data item record;

a size of the data item record image.

50. The method of claim 49 wherein the client data map

comprises:

a dirty bit;

a last time sent;

a client-specific meter rate.

51. The method of claim 43 wherein the processor is resi-

dent within a data distribution node.

52. The method of claim 43 wherein the data comprises

financial market data.

53. The method of claim 43 wherein the processor is resi-

dent within an intelligent network interface card (NIC).

54. The method of claim 43 wherein the processor is co-

resident with a DMA engine.

55. The method of claim 43 wherein the processor is resi-

dent within a connection multiplexer.

56. The method of claim 43 wherein the processor is resi-

dent within an edge cache device.

57. The method of claim 43 wherein the processor is resi-

dent within a ticker plant.

58. The method of claim 43 wherein the processor com-

prises a coprocessor.

59. The method of claim 58 wherein the coprocessor com-

prises a reconfigurable logic device.

60. The method of claim 58 wherein the coprocessor com-

prises a multi-core processor.

61. The method of claim 58 wherein the coprocessor com-

prises a graphics processing unit (GPU).
62. An apparatus for data distribution comprising:
a processor; and
a memory;
wherein the processor is configured to:
maintain a plurality of data records in the memory, the
data records corresponding to a plurality of items for
which event data is to be distributed to a plurality of
data consumers on a metered basis, the records iden-
tifying the subscribed data consumers for each item
and metering data for each subscribed data consumer
for each item such that the records support differing
metering rates for a plurality of same items with
respect to a plurality of different data consumers and
differing metering rates for a plurality of different
items with respect to a plurality of same data consum-
ers;

receive a plurality of events corresponding to the items;
and

perform a metered distribution of data relating to the
received events to the data consumers based on the
data records such that the data distribution is metered
on a per-data consumer/per-item basis in accordance
with the metering data in the data records that are
applicable to the items corresponding to the received
events.

63. An apparatus for distributing data, the apparatus com-

prising:

a multi-class distribution engine (MDE), the MDE config-
ured to distribute a plurality of events corresponding to a
plurality of items and belonging to a plurality of classes
on a class-specific basis from a data producer to a plu-

US 9,047,243 B2

31

rality of data consumers according to at least two mem-
bers of the group consisting of (1) a critical data distri-
bution technique wherein all events are distributed to a
data consumer for reading thereby, (2) an adaptive data
distribution technique wherein (i) all events are distrib-
uted to a data consumer for reading thereby if no con-
gestion exists with respect to the data producer and that
data consumer, and (ii) conflated events are distributed
to a data consumer for reading thereby if congestion
exists with respect to the data producer and that data
consumer, and (3) a metered data distribution technique
wherein events are distributed to the data consumers for
reading thereby in accordance with metering policies
that vary on a per data consumer/per item basis.

64. The apparatus of claim 63 wherein the MDE is further
configured to distribute the events on a class-specific basis
from a data producer to the data consumers via a plurality of
direct memory access (DMA) write operations to a plurality
of shared memories in the data consumers according to at
least two members of the group consisting of (1) the critical
data distribution technique, (2) the adaptive data distribution
technique, and (3) the metered data distribution technique.

65. The apparatus of claim 64 wherein the MDE comprises
an update classification engine (UCE), the UCE configured to
determine a class for each event, the MDE further configured
to (1) select a distribution technique for each event from
among the at least two members based on the determined
class for that event, and (2) distribute the events to the data
consumers in accordance distribution technique selected
therefor.

66. The apparatus of claim 64 wherein the MDE comprises
(1) a plurality of output interconnection interfaces, (2) a plu-
rality of transmission engines, and (3) a scheduler configured
to ensure that each transmission engine utilizes a specified
fraction of the bandwidth available on the output intercon-
nection interfaces.

67. The apparatus of claim 64 wherein the MDE is config-
ured for processing streaming financial market data.

68. The apparatus of claim 64 wherein the MDE is resident
in a distribution node.

69. The apparatus of claim 68 wherein the distribution node
comprises:

a shared memory data cache;

a control plane;

a consumer distribution record memory;

the MDE;

an upstream DMA interconnect adapter; and

a downstream DMA interconnect adapter.

70. The apparatus of claim 68 wherein the distribution node
comprises:

a shared memory data cache;

a control plane;

a consumer distribution record memory;

the MDE;

an upstream DMA interconnect adapter; and

a downstream message interconnect adapter.

71. The apparatus of claim 68 wherein the distribution node
comprises:

a shared memory data cache;

a control plane;

a consumer distribution record memory;

the MDE;

an upstream message interconnect adapter; and

a downstream message interconnect adapter.

72. The apparatus of claim 64 wherein the MDE is further
configured to select a data distribution technique from among
the group according to a static configuration.

10

15

20

25

30

35

40

45

50

55

60

65

32
73. The apparatus of claim 64 wherein the MDE is further
configured to dynamically select a data distribution technique
from among the group.
74. The apparatus of claim 64 wherein the MDE is resident
within a connection multiplexer.
75. The apparatus of claim 64 wherein the MDE is resident
within an edge cache device.
76. The apparatus of claim 64 wherein the MDE is resident
within a ticker plant.
77. The apparatus of claim 64 wherein the MDE is resident
on a coprocessor.
78. The apparatus of claim 77 wherein the coprocessor
comprises a reconfigurable logic device.
79. The apparatus of claim 77 wherein the coprocessor
comprises a multi-core processor.
80. The apparatus of claim 77 wherein the coprocessor
comprises a graphics processing unit (GPU).
81. A method for distributing data comprising:
receiving a plurality of events for distribution to a plurality
of data consumers, the events corresponding to a plural-
ity of items;
determining a class for each received event from among a
plurality of classes;
selecting a distribution technique for each received event
from among a plurality of distribution techniques based
on the class determined therefor, the plurality of distri-
bution techniques comprising at least two members of
the group consisting of (1) a critical data distribution
technique wherein all events are distributed to a data
consumer for reading thereby, (2) an adaptive data dis-
tribution technique wherein (i) all events are distributed
to a data consumer for reading thereby if no congestion
exists with respect to the data producer and that data
consumer, and (ii) conflated events are distributed to a
data consumer for reading thereby if congestion exists
with respect to the data producer and that data consumer,
and (3) a metered data distribution technique wherein
events are distributed to the data consumers for reading
thereby in accordance with metering policies that vary
on a per data consumer/per item basis; and
distributing the events on a class-specific basis to the data
consumers according to the selected distribution tech-
nique for each event; and
wherein the method steps are performed by a multi-class
distribution engine (MDE).
82. A method for data consumption comprising:
receiving data in a shared memory via DMA write opera-
tions from a data producer;
maintaining a table that identifies locations in the shared
memory data where a plurality of items can be found;
receiving a read request corresponding to an item;
accessing the maintained table in response to the received
read request to determine the location where data for the
item corresponding to the read request can be found;
reading data from the shared memory at the location deter-
mined in response to the accessing step; and
performing a coherency checking operation on the read
data;
wherein the method steps are performed by a processor.
83. The method of claim 82 further comprising:
the processor generating a notification when new data for
an item has been written to the shared memory by the
data producer; and
wherein the read request receiving step comprises the pro-
cessor receiving the read request in response to the gen-
erated notification.

US 9,047,243 B2

33

84. The method of claim 83 further comprising:

maintaining a last record cache; and

the processor performing a delta comparison operation
between the data read from the shared memory and data
within the last record cache to determine which record
fields were updated and to indicate the updated fields to
a data consumer.

85. The method of claim 83 further comprising:

maintaining a plurality of update notification filter rules
specified by the data consumer; and

the processor performing a filtering operation to determine
whether to notify the data consumer that an update has
occurred for a subscribed data item.

86. The method of claim 83 further comprising:

the processor processing the generated notifications to
determine whether the notifications should be passed to
a plurality of consuming applications.

87. The method of claim 83 wherein the data comprises

financial market data.

88. The method of claim 83 wherein the processor com-
prises a coprocessor.

89. The method of claim 88 wherein the coprocessor com-
prises a reconfigurable logic device.

90. The method of claim 88 wherein the coprocessor com-
prises a multi-core processor.

91. The method of claim 88 wherein the coprocessor com-
prises a graphics processing unit (GPU).

92. The method of claim 82 wherein the processor is co-
resident with a DMA engine in direct communication with a
DMA interconnect adapter such that data is written to shared
memory directly accessible by the processor and data need
not cross a data consumer system interconnect into system
memory or require involvement by system software.

93. An apparatus comprising:

a processor configured to (1) receive data in a shared
memory via DMA write operations from a data pro-
ducer, (2) maintain a table that identifies locations in the
shared memory data where a plurality of items can be
found, (3) receive a read request corresponding to an
item, (4) access the maintained table in response to the
received read request to determine the location where
data for the item corresponding to the read request can be
found, (5) read data from the shared memory at the
location determined in response to the access operation,
and (6) perform a coherency checking operation on the
read data.

5

10

15

20

25

30

40

45

34

94. The apparatus of claim 93 wherein the processor is
resident on a reconfigurable logic device to offload an appli-
cation programming interface (API) function from a data
consumer.

95. The apparatus of claim 94 further comprising a direct
memory access (DMA) interconnect adapter in communica-
tion with the reconfigurable logic device.

96. A method for data distribution comprising:

receiving a plurality of events for distribution to a plurality
of data consumers;

determining a class for the events from among a plurality of
classes;

selectively delivering the events to a first queue or a second
queue based on the determined classes for the events;

a metering engine reading events from the first queue;

the metering engine performing a metering function on the
events read from the first queue to control a metered
transmission of the events read from the first queue;

the metering engine delivering metered events to a third
queue in accordance with the metering function;

a fanout engine downstream from the metering engine
reading events from the second queue and metered
events from the third queue;

the fanout engine distributing the read events from the
second and third queues to the data consumers such that
the events in the second queue are distributed to the data
consumers on a non-metered basis and the events in the
third queue are distributed to the data consumers on the
metered basis.

97. The method of claim 96 wherein the metering engine
and the fanout engine are resident on a reconfigurable logic
device, the metering engine and the fanout engine operating
simultaneously with respect to each other as the streaming
events are received and processed.

98. The method of claim 97 wherein the events comprise a
plurality of financial market data messages.

99. The method of claim 96 wherein the second queue is for
real-time data traffic, and wherein the distributing step com-
prises the fanout engine distributing the events in the second
queue to the data consumers on a real-time basis and distrib-
uting the events in the third queue to the data consumers on
the metered basis.

